

THE 9 POINTS OF THE TRI-ANG TRUCK

1. All parts built to scale, of heavy gauge steel.
2. Bright red and black stove-enamelled, with nickel-plated radiator and fittings.
3. Body tips by one turn of steel handle.
4. Driven mechanically by momentum flywheel -a push, and it goes by itself.
5. Real steering by wheel in cab.
6. 6 wheels with big balloon rubber tyres.
7. Loaded with 6 dove-tailed hard-wood boxes.
8. Weight $6 . \mathrm{lbs}$. Length 20 ins.
9. British made throughout from British materials.

This is something more than an ordinary toy. It is a real engineering job, made from the finest British steel by British craftsmen. A life-like mechanical motor truck driven by a powerful momentum flywheel. A motor truck that will last and last. Every boy will love this model. Every parent will be fascinated by it. Study the 9 points of the Tri-ang truck. Think what a present it would make! And it costs only ros. 6d. at any toyshop!

6 Whffled transport TRUCK ${ }^{106}$

 The tor sensation of the Season
With the Editor

Dangers of "Safety First"

During recent years the slogan "Safety First" has come into prominence in a remarkable manner It was introduced with the object of bringing about a decrease in the enormous number of accidents occurring every year on the road and in factories and workshops; and for this purpose "Safety First" as a rule for daily use is ideal. As a rule of life, however, the slogan is not so good. If "Safety First" principles had governed human actions throughout the centuries, America would never have been discovered, the Arctic and Antarctic regions would for ever have been unknown and shrouded in mystery, and the British Empire would never have been founded.
A few days ago I was talking to a boy who is shortly due to leave school, and I asked him what career he proposed to follow. "I don't know," he replied in a casual manner ; " I suppose I shall go into an office of some kind." That boy probably will do as he said, and will drive through life in a humdrum fashion. His job will be safe, comfortable, and not too strenuous, and he will be satisfied to draw his comparatively small salary week by week, with an increase from time to time as somebody above him leaves the office or dies. I hope that the majority of my readers are not like this boy.
When the end of his schooldays is approaching, a boy of normal health and ability should begin to think seriously about his career. I know quite well that some boys, because of unusual home responsibilities, must necessarily take a " safe " job bringing in a regular salary without risk; while to other boys there inevitably falls the task of carrying on some work begun by their fathers. The majority of boys have no such restrictions, however, and are free to choose their own careers; and I strongly urge every

Sir Charles T. Bright, 1832-1888.
messages could not be transmitted over so great a distance. The first efforts seemed to suggest that the critics of the scheme were right, for the cable broke after only 380 miles of it had been laid. A second effort was little more successful, but Bright and his immediate associates doggedly set out for a third time on what was regarded as "a mad freak of stubborn ignorance," and, to the amazement of the public, the Old World and the New were brought into communication with one another by telegraph. This success came in 1858, and we may imagine the bitter disappointment of the young engineer when the cable failed after only 732 messages had been transmitted. It was soon proved, however, that this breakdown was not due to any defect in the cable, but to the use of electric power greater than it could stand. Seven years later a new cable was laid with comparatively little trouble in 14 days. All the important seas of the world are now crossed by cables, which play an enormous part in the transmission of news and in the carrying on of trade and commerce. It is interesting to compare the state of affairs existing when Bright laid the first Atlantic cable with the conditions of to-day. Bright had to devise his own methods of making the cable and of stowing it in the comparatively slow and clumsy vessels then available; and in addition had to design the machinery required to carry out the delicate task of paying out the cable as the vessel proceeded. Cable laying in those days was not only difficult, but often dangerous. On one occasion Bright and his men suffered so severely from fever while laying cables that on four successive days the engineer recorded in his diary the death of one man and the funeral of one who had died on the previous day. In other parts of the world Bright was in danger of attack by pirates, or of drowning in storms that threatened to overwhelm the heavily laden cable ships; while on one occasion the shore end of a cable had to be landed by men wading in slush and mud 4 ft . in depth for a distance of more than four miles in a terrific tropical thunderstorm.
The early cables suffered severely from the attacks of many sea creatures. The most persistent of these animals were the teredos, little marine worms that bore their way through wood and similar materials, and appeared to have a special liking for submerged cables in tropical seas. Bright mixed calcined flint with the covering compound of his cables, and later reported with glee that this gritty material had effectively broken the teredos' teeth! A remarkable occurrence was the cause of a break in a cable laid in the Indian Ocean. The broken end was fished for and found with a grapnel, and when hauling-in operations commenced it was noticed that the cable seemed unusually heavy. When it finally reached the surface the men were amazed to find that they had pulled up with it the decomposed body of a large whale. It is believed that the creature had rubbed its tail along the cable in order to get rid of barnacles, and had become entangled in it. Its subsequent struggles caused the cable to part, and ensured its own doom by completely entangling it in the coils.

To-day cable laying is carried out by ships specially designed and built for the work, and fitted with wonderfully perfect machinery and instruments for paying out or picking up the cable, and for carrying out the necessary tests. In addition their crews do not suffer the hardships and discomforts of the pioneers.

TTHE invention of the wheel, one of man's greatest triumphs, came about in prehistoric times, and probably was suggested by the use of tree trunks as rollers for moving heavy objects. Later, holes were bored through the centres of logs in order to enable wooden axles to be fitted, and thus the true wheel came into existence. As the use of iron spread, the wheel was made stronger by fitting round it tyres made of this metal, and other improvements then slowly led to the various forms of wheel employed to-day. Wheeled vehicles have now practically displaced the pack animal and the porter, these forms of transport being employed only in very rough conditions, or in primitive countries.

The use of wheels made it necessary to construct roads, for they concentrate the weight of their load on a very small area, and thussink into soft ground, forming ruts and destroying the surface. It is not generally realised that sinking of this kind greatly increases the effort that is required to move a wheel. In reality, a wheel that travels in a depression has to be hauled up an incline with a severe gradient, and as it continues to sink as it rolls along, there is always a steep slope in front of it. One remedy is to provide a solid road bed with a very hard surface, and efforts in this direction have led to the development of the hard and durable road surfaces of to-day.

The cost of producing and maintaining efficient road surfaces is very high, however, and it is only among highly developed and flourishing communities that we find a network of roads sufficiently good to make wheeled transport efficient. In Great Britain and other civilised countries there are many good roads and excellent transport organisations, but in other parts of the world there are large areas where good roads are rare, although their development depends upon - adequate transport. For instance, most of the roads in the Gold Coast, Uganda and other African countries are practically without foundations, and are provided with very light metalling to form the surface. Such roads are suitable for light-wheeled traffic in dry weather, but are impractic-

able to all forms of transport during the rainy season.

There are also large tracts of rich territory as yet untouched by roads or railways, and unexploited because of the difficulties of transport. Both roads and railways are too costly to be used in the preliminary work of opening up new lands, and penetration by means of wagons drawn by horses or oxen is tedious and slow. The only alternative is the employment of mechanical transport designed and built specially for the conquest of primitive con-
ditions, and to-day the development of virgin country depends to a very large extent on the available resources of motor transport. The ordinary four-wheeled motor vehicle is not suitable for transport service over stony and mountainous roads, nor for crosscountry work over desert or other difficult ground. The problem of penetrating into rough country has been solved by substituting specially designed creeper track mechanism for the rear wheels, however, and cars equipped in this manner readily travel across marshes, or rockstrewn and sandy ground; and are not held up by deep snow, even on severe mountain gradients.
The value of creeper track as a means of traversing ground impassable or difficult to ordinary wheeled vehicles was demonstrated clearly by the successful manœuvres of the "tanks" used during the War. Artillery tractors fitted with creeper track are used regularly by military authorities, and armoured cars, ambulance cars and infantry supply column lorries are other types of military vehicles now equipped with this mechanism for use in mountainous regions. In civilian transport to mountaineering and other expeditions, and our cover this month shows one of the heavily laden cars of a German mountainclimbing expedition in the Himalayas negotiating a particularly difficult corner in the rugged country through which the approach was made to the peaks to be surmounted.
Some remarkable transport feats over difficult and roadless country have been accomplished by Citroën Kegresse vehicles. These are Citroën cars equipped with a patent creeper track. The track mechanism at each side of the vehicle consists of an endless belt that passes over a series of driving pulleys and weight-carrying rollers, lugs on the rims of the pulleys engaging with driving teeth placed along the inner surface of the belt. The weight-carrying rollers run along the path formed by the inner surface of the belt and are mounted in such a manner that they conform with any irregularities of the ground traversed by the vehicle.

In 1922 Citroën Kegresse vehicles were tested successfully in the snow on the Alps and Pyrenees, and in 1922-3 the first crossing of the Sahara desert by motor was accomplished in vehicles of this type. This expedition consisted of five cars and was in charge of Mr. Haardt, general manager of the Citroën works, assisted by M. Audouin-Dubreuil. It left Tugurt at dawn on 17th December, 1922, to attempt for the first time the opening up of direct motor communication between North Africa and the Niger

Valley. The expedition followed the caravan route and forged ahead steadily, the creeper tracks of the vehicles negotiating the sandy plain without difficulty. The Fort of Hassi Inifel was reached on the 19 th December, and after leaving there the expedition traversed a desolate upland covered with stones and cut with deep crevices, and descended through sinister gorges toward the plains of Tidikelt.

At In-Salah, an oasis in the desert, the pioneers were met by the entire population carrying palm branches, and Arab horsemen greeted them by firing a salute. After a couple of days' well-earned rest the expedition moved on again at dawn on Christmas Eve, and crossed the vast windswept plains of Tidikelt, finding the route plainly marked by a gruesome trail of skeletons of camels. The sandy wilderness eventually gave way to rock-strewn stony desert, but in spite of these new conditions the cars continued without any slackening of speed. Although matters were rendered more difficult by the absence of tracks, the expedition's excellent progress was maintained, and more than 124 miles per day were covered. During Christmas night, camp was pitched on the borders of the dreaded Hoggar Range, the veritable centre of the Sahara.

After safely negotiating the rocky fastnesses of the Hoggar Range, the expedition came to the almost unknown Tanezrouft, or " Great Desert of Thirst." This is a region of sandhills and plains with frequent rugged outcroppings of rock, and has been called the " country of mysterious disappearances" because of the many travellers who have perished in its terrible sandstorms, leaving no traces behind them. While the party was crossing this desert, a great sandstorm appeared upon the horizon and swept down upon them with terrific force. It was almost impossible to see what lay ahead, for the air was full of gritty particles of sand, and the members of the expedition had great difficulty in breathing and in keeping in touch with each other. The Great Tanezrouft, until then inviolate to motor cars, seemed to be trying to avenge itself upon the little Citroëns, but eventually the storm passed and the journey was resumed.

Beyond the desert the cars threaded their way through the grassy steppes of the Niger country to Burem, a fort on a hillock overlooking the river The final stage, from Burem to Timbuctoo, was over ground thickly covered with brushwood, but this did not in any way hinder the creeper track vehicles, and the distance was covered non-stop in 27 hours. Timbuctoo was reached on 7th January, 1923, exactly three weeks after leaving Tugurt. There the expedition was met by the Commander of the district, who was accompanied by officers and civil authorities, and was escorted by natives on horseback; and he congratulated the members of the expedition on the success of their efforts. During this pioneer journey the cars behaved admirably and in spite of the adverse ground conditions encountered, they attained at times a speed of $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

In 1924 a more extensive journey across Africa was carried out by M. Haardt and M. Audouin-Dubreuil. The chief purpose of this expedition was to demonstrate the feasibility of motor transport across Central Africa, and to trace a route for the railway that

eventually may be built across the desert. Eight 10 h.p. Citroën Kegresse vehicles were employed, and on account of the great quantity of equipment that had to be carried it was necessary to provide each car with a trailer, and both cars and trailers were fitted with extra water, gas and oil tanks.

The expedition set out from the railhead at Colomb Bechar, in Algeria, on 28th October, 1924, to cross desert and jungle, some of which had never before been traversed by mechanical means. As the creeper track vehicles spread through the miniature ravines and over the hillocks of the South Algerian Plain they looked for all the world like the vessels of a flotilla performing manœuvres on a rough sea. The first stage of the long journey was across the French Sahara, which had been crossed by the previous expedition, and on 10th November, the expedition entered the Tanezrouft, where a stretch of more than 330 miles was covered without finding a drop of water. The dried skeletons of travellers who had died of thirst, were found, the bleaching bones being all that remained of a caravan from the Soudan that had miscalculated its water supply.

In a personal account of this expedition M. Haardt relates that " after driving for five days in the Tanezrouft our nerves began to feel the effects of its monotony and the vastness of its solitude. Coincidentally we experienced all sorts of difficulties. The cars seemed to sink deeper and deeper into the sandy ground and consumed great quantities of petrol, due to the necessity of an almost constant use of second gear. The blinding brilliance of the sun, the intense heat, and the foul smell of petrol, caused by an everlasting rear wind, all had a disturbing effect and contributed towards the development among us of a very real anxiety lest our gas or water fail before we reached the oasis at Tessalit. Our fears proved groundless however, for we sighted waving palms before our supply of either was near exhaustion."

Burem was reached in three weeks and the River Niger followed as far as Niamey, where the expedition turned away and skirted the border of British Nigeria. Eventually it entered the Belgian Congo and was soon in the midst of the Equatorial Forest. The Belgian Administrator of

Scenes during the Citroën Sahara Expedition. (Top) The cars ploughing their way through the sands of the Tanezrouft or "Thirsty Desert." (Centre) A close-up view of one of the cars, showing the patent creeper track. (Bottom) Traversing rocky country in the Sahara.
the Colony had employed 40,000 natives to cut a trail 375 miles in length through the forest, and the task had been accomplished in less than a month. In spite of these facilities the journey was a formidable one, but the creeper track cars proved equal to the occasion. After passing through the forest the expedition pushed on to British East Africa.
" Some of the many thrills we experienced came when we took our cars across precarious wooden bridges," says M. Haardt. "They were made of comparatively slender branches tied together with lianas and reclining on light buttresses. They were usually from 80 ft . to 130 ft . long and often from 15 ft . to 35 ft . above the river or ravine. It was always with fear and trepidation that we drove our first car out on these bridges, which creaked and swayed in a most alarming manner, but fortunately most of the vibrations were lateral ones and we suffered no mishaps.'

On reaching Lake Victoria, the
(Continued on page 441)

VI.-By Frank Hornby

THE early history of Hornby Trains is as fascinating as that of Meccano. To begin at the beginning $\because \mathrm{I}$ must take you back to the time of the Great War, a bygone age to most of you but a vivid memory to those of us who survived that stormy period. Among the new parts added to the Meccano System somewhere about this time was Part No. 108, Architrave, and when samples of this part were being examined someone drew attention to its resemblance to the side of a locomotive cab. It was evident that it would be a useful part in the construction of Meccano locomotives, as we had not previously been able to satisfactorily model an engine-cab.
To see exactly how the part would build up we had a model constructed, using another special part for the boiler. The model looked very realistic and, as someone pointed out, its only drawback was the fact that it would not run under its own power. From the construction of this little model was but a step to the idea of marketing a constructional locomotive having a specially-designed clockwork motor, but the idea had to be shelved until such time as our machines were released from the War work on which they were engaged.

The idea, as originated in this little Meccano locomotive, which is illustrated on this page, was one that was to bear abundant fruit in the later years. More particularly so because during the later years of the War there, was a scarcity of mechanical toys of all kinds. Prior to 1914 most toys of this nature had been imported from the Continent, and of course when hostilities commenced this source of supply had come to an end. The greatest grievance of the youngsters of that period was the impossibility of obtaining toy trains.
For some time after the Armistice we were fully occupied in making up for lost time in the production of Meccano. We did not lose sight of the possibility of clockwork trains, however, and carried out numerous experiments to develop the earlier ideas on sound practical lines. In 1920 we decided to commence the manufacture of clockwork trains, and in that year the first "Hornby Train" was placed on the market.

These trains were unique in that they applied the Meccano constructional idea. Engines, tenders and trucks were built up from standard units, and could be taken to pieces and rebuilt in a similar manner to Meccano models.

In addition, new parts could be purchased at any time to replace any that might be damaged or lost. The clockwork mechanism was of first-class quality, and we paid particular attention to the accurate cutting of the gears in order to ensure the smooth running that is so desirable in miniature trains. We decided to build our trains to the standard miniature Gauge " 0 ," in which the distance from inside to inside of the heads of the rails is $1 \frac{1}{4} \mathrm{in}$. We also decided upon two standard curves, forming respectively circles of 2 ft . and 4 ft . diameter. The success of these first Hornby Trains was immediate, and indeed it surpassed all expectations. The reason for this was that the army of Meccano boys had complete faith in anything turned out by the Meccano factory, and consequently Hornby Trains were purchased without hesitation.
From the outset we determined that the Hornby miniature railway system should be just as perfect in its wav as Meccano, and the ideal that we kept in mind was that of a gradually growing and developing system that ultimately would be capable of reproducing in miniature practically all the everyday operations of actual railways. Before long we found that the building of locomotives and rolling stock on the Meccano constructional plan was proving a handicap to the development of more realistic and true-to-type models. After careful consideration, therefore, we decided to abandon the constructional plan, and since 1925 all Hornby locomotives and rolling stock have been built from specially-made components, assembled into a complete unit.

In order to provide as great a variety as possible the first Hornby Trains were made available in five colours to represent the London and North Western, Midland, Great Northern, Caledonian, and London, Brighton and South Coast railway

Our first locomotives were well designed and constructed, and we received an astonishing number of letters expressing the keenest enthusiasm in regard to their smooth running and excellent hauling powers. We were not satisfied, however, and a section of our technical staff was set to work to study further the problems involved in the construction of clockwork engines, and to introduce every possible improvement that would make for greater efficiency. This development work has gone on ever since, and as a result Hornby locomotives have been improved

The first Hornby Train Set. The engine, tender and truck were built up from standard parts.
steadily year by year until we can fairly claim that they are superior to all rivals.

Along with the development of
locomotives there has proceeded a steady increase in the number of types of rolling stock and of accessories of all kinds. Many of these items were introduced as the direct result of requests from boys. The suggestions put forward in the letters arriving day by day in large numbers from all parts of the world are carefully tabulated, and when it is seen that there is a widespread demand for a particular item, the production of this is carefully considered. If the idea proves practicable, designs are got out, and before long the new accessory or piece of rolling stock is being turned out by the thousand, to the great joy of the boys who suggested it.

Soon after the introduction of the Hornby System we began to receive requests for electrically-propelled locomotives. We postponed development in this direction until our clockwork trains were thorough-
ly established, and then in 1925 introduced an electric train set modelled on the lines of the trains of the London Metropolitan Railway. The locomotives of these first Metropolitan sets were operated by high - voltage motors, but before long we abandoned these motors in favour of low-voltage motors, first of four volts and afterwards of six volts. These motors had the great advantage that they could be used either with an alternating current mains supply through a transformer, or from an accumulator. They were thus available for every boy, whether his home had electric light installed or not.

The starting and stopping of these locomotives, and their running speed, are controlled by a special resistance controller situated outside the track, but reversing has to be done by the movement of a lever in the locomotive cab. In response to many requests we introduced some time ago a tank locomotive to be run from a six-volt accumulator, not from the mains, which can be reversed as well as started, stopped and controlled for speed from a controller outside the track. This fast and powerful little locomotive can thus be made to do anything without the necessity of touching it, and it has become a great favourite with Hornby railway enthusiasts.

Electric locomotives have the advantage that they do not require to be wound up. They keep on running as long as the current remains switched on, and the un-railway-like spectacle of a train stopping half-way between stations, owing to the clockwork having run down, is avoided. Long continuous runs are possible-one Hornby Train ran continuously for over 800 milesand at the same time stops may be made as required. In addition there is sufficient power available to enable gradients to be incorporated in a layout, so that an actual descent to and ascent from an underground section of line is possible.

In 1926 the Hornby Control System was introduced, and this has enabled miniature railways to be operated on lines closely following actual practice. By means of a special lever frame and connecting wires, the points and signals of a layout can be controlled from a signal cabin just as is done on a real railway. The application of the Control System to a model railway thus increases its realism and interest to an enormous extent. Another introduction that has tended towards greater realism, especially in shunting operations, is that of automatic couplings. These are now fitted to all Hornby locomotives and rolling stock. They couple on impact, so that an engine may be backed on to its train in the correct manner-a piece of model railway working that is always interesting to watch-and the couplings will engage of their own accord. All that then remains to be done is to reverse the engine, and the train is ready to depart. The speed of operations, particularly in a busy terminal station, is thus considerably
increased as compared with the ordinary method of coupling. The latest additions to the Hornby Railway System have been introduced for the special purpose of giving "life" to a model railway, and providing it with suitable surroundings. The bare and desolate appearance that characterises the station platforms of so many model railways has always seemed to us to be a serious defect, and we determined to do what we could to improve matters in this respect. We therefore introduced first of all a series of miniature platform accessories, including luggage and a porter's barrow, milk cans with a suitable truck, and such items as seats, a letter-box, and automatic machines. To these accessories we have recently added a series of miniature figures-stationmaster, guard, porters, ticket collector, engine driver, hotel porters, etc.-and a station platform provided with a selection of these miniatures immediately takes on an appearance of life and realism that is quite remarkable. The trains must have a reason for running, and a series of miniature passengers is to be added to the existing operating staff. To increase still more the lifelike appearance of the station, miniature posters are available. These are smallscale reproductions in the original colours of the most famous posters that cover the hoardings of our towns and cities. They are gummed on the back, so that they may be readily attached to the miniature station hoarding. As an alternative the posters may be mounted on special poster boards fitted with two lugs that can be attached easily to fencing and to bridges.

The Hornby System is particularly well equipped with accessories in the shape of lineside structures of various kinds. There is the signal cabin, which can be arranged to accommodate the lever frame, or in the case of electric layouts, the controller; there are stations and goods platforms, where heavy traffic can be dealt with; and there are the imposing Engine Sheds for the housing of the locomotives. Among the smaller accessories, the watchman's hut and the platelayer'shut are particularly effective, and have proved extremely popular on account of their realistic appearance.

Another notable introduction is a series of train name boards and destination boards. By means of these boards the various expresses of the Hornby Series may be appropriat ely named, the most famous trains of the four groups being represented. The improvement in the appearance of miniature trains brought about by the use of these boards is quite remarkable.

Many of the Hornby accessories, such as the engine sheds, goods platform, signal cabins, signals and buffer stops, have recently been suitably wired and fitted for electric lighting. It thus becomes possible to illuminate a miniature layout on realistic lines, the signals in particular having a most fascinating appearance.

As the result of widespread requests we have recently extended our range of tunnels, with the special object of assisting the owners of railways that have to be taken up and stowed away each time after use. These tunnels are made in various lengths, and special features are the curved tunnels in the form of a small hill through which the track runs obliquely. These may be obtained either with a right-hand or a left-hand curve, so that they are suitable for any layout.

Still another innovation that will add enormously to the appearance of any model railway is a series of cuttings. These also are made in a variety of sections. There are end sections, sloping down realistically to ground level, and centre sections to be inserted between these end sections, thus enabling a cutting to be extended to any desired length. The centre sections are also made in curved form.

XXXI.-A POLICE OFFICER

APOLICE force is a necessity in every civilised country, and bodies of this kind have existed in Great Britain since Saxon times. The watchmen, constables and other officials who formerly kept order and arrested criminals and lawbreakers in the towns and parishes of the kingdom were not very efficient, however, and the first really satisfactory police force was the Bow Street Patrol, the members of which were usually called the "Bow Street Runners." This force was formed in 1745, and was a step towards the introduction of modern police methods.

The first police force of the kind with which we are familiar came into existence in 1829, when Sir Robert Peel introduced " An Act for improving the Police in and near the Metropolis." The official title of Metropolitan Police Force was given to the new force, and to-day its members number nearly 21,000 , and patrol an area of about 700 sq . miles. Later similar bodies of police were formed in the boroughs and counties of England and Scotland, and a semi-military force known as the Royal Irish Constabulary was established in Ireland.

Although the police forces of this country are directly controlled by local bodies through special committees, they work under regulations laid down by various Acts of Parliament and, through the Home Office, the Government exercises close supervision in order to ensure efficiency. All are organised on similar lines. Except in the Metropolitan Police Force, the officer in charge is known as the Chief Constable, and the men under his command are grouped in divisions, each headed by a superintendent, who is assisted by a chief inspector. Each division consists of a number of sub-divisions under the control of sub-divisional inspectors, and each sub-division contains police stations, the number depending on the size and population of the district covered. Police stations are in charge of inspectors, stationsergeants, orssergeants, according to their importance, and the men attached to them are distributed into sections, each being

Mr. A. K. Wilson, Chief Constable of the Liverpool City Police Force. Mr. Wilson entered the police service in 1909 as a constable at Cardiff. He rose rapidly to the rank of Staff-Inspector in the Chief Constable's office, and in 1928 was appointed Chief Constable of Carlisle. A year later he became head of the Plymouth Police Force, and while holding this position he displayed courage and resource in subduing the recent riot in the Prison at Dartmoor, He was appointed Chief Constable of Liverpool in January of this year. Photograph by courtesy of the "Liverpool Daily Post and Echo."

20 and 26 years, and they must be healthy and of a minimum height and chest development. An Act of Parliament of 1921 gives 5 ft .8 in . as the minimum height, with chest measurement in proportion, but the requirements of different police forces vary. In many instances applicants must be at least 5 ft .9 in . in height, and in other cases the standard is higher, the average height throughout the country being 5 ft .10 in .

A candidate for admission to the police force must give evidence of having been reasonably well educated. This usually means that he must be proficient in the subjects taught in elementary schools, and emphasis is laid on general intelligence. Again the requirements of different police forces vary, and in certain instances an examination may be set in order to test the ability of the applicant.

In addition to possessing these qualifications, a young man wishing to join the police force must be able to produce satisfactory proofs of good character. If he thinks he is eligible, he should ascertain the requirements of the police force that he wishes to join, and having made certain that his qualifications are in order, he then should send his application to the Chief Constable. When doing so, he should give details of any special qualifications he may possess, for the work of a constable covers a very large field, and ability to undertake tasks out of the ordinary routine is a great advantage. No effort should be spared to make the application complete and to ensure that all the requirements are thoroughly complied with, for competition for admission to the police forces of this country is very keen, and only the best men are accepted. In addition, there is usually a long waiting list, and a considerable time may elapse before a suitable applicant secures admission. This is particularly the case at present, because the need for economy has caused recruiting throughout the country to be either suspended or slowed down. Appointments as constables are made subject to a probationary period of two years, and if in the interval the probationer does not make the requisite progress, his services may be dispensed with. During the preliminary period recruits go through a course of training, either at headquarters, or at centres devoted to this purpose. The courses at police training schools are very thorough, and the progress of the men is carefully checked from time to time. For instance, training at the Metropolitan Police Training School begins with educational classes for recruits who have not attained a sufficiently high standard. Then comes a course of training in police duty, and also in first aid, self-defence, physical training and other subjects likely to be of value. The entire course is divided into sections, and each man must pass in any one section before he is allowed to go on to the next. This period of training usually occupies about three months, and on its completion the probationer is attached to a division of the active police force. Even then he continues his training, receiving instruction daily from a specially appointed inspector. At the end of six months he is again brought back to the school, where he is examined by an independent Board.

There are also excellent police training schools at Birmingham and Manchester, and probationers from other police forces are received there for a course of ten weeks' training in all police duties. They do outdoor patrol work and are examined weekly, and while at the school are treated as members of the Birmingham and Manchester forces respectively.

Promotion is not a matter of seniority, but of merit. A constable who has served for five years, and whose conduct has been satisfactory, is eligible for promotion, but this period may be shortened for those who possess special qualifications. It also is necessary to pass an examination, which usually is partly oral and partly written, and includes papers on police duties in addition to questions in school subjects and general knowledge. Passing the examination is a necessary qualification, but does not entitle an officer to promotion, this depending on his merit as a constable, and on his ability to take charge of men or to further the interests of the force in some special branch of work.
Men with a good education should secure promotion fairly rapidly, for they should have no difficulty with the necessary examinations and they are likely to have special qualifica tions. For instance, they may be fitted for detective work. This constitutes an important part of the activities of the Metropolitan Police Force, the C.I.D. or Criminal Investigation Department, with its headquarters at New Scotland Yard, being famous all over the world. Its members are only recruited from the ranks of the Metropolitan Police Force, and those who aspire to join it therefore must first be enrolled as constables. Probationers are watched in order to see if they show suitable powers of observation and reasoning, and if they seem promising are afterwards told off for plain clothes duty. If their work is satisfactory they are told to apply for entry to the C.I.D. Then follows an interesting training in criminal detective work, and a special examination must be passed before the candidate becomes a recognised member. Pay in this branch is the same as that of the uniformed police, but certain detective and plain clothes allowances are made. Other police forces carry out similar work on a smaller scale, of course.

The mounted branch of a police force offers an excellent opportunity to those who have a thorough knowledge of horsemanship. Small detachments of mounted men are maintained in most large forces, and an interesting recent development is the establishment of traffic patrols, the members of which must know how to maintain and repair motor cycles and motor cars. In certain instances river detachments are attached to police forces. This is notably the case with the Metropolitan Police Force, the Thames police forming an important section of this body. Its members must first serve as ordinary policemen, and their applications to the Superintendent of this branch should be backed up by a knowledge of swimming, rowing and of rivercraft generally.

A further activity closely connected with police work is firefighting. The Fire Brigade in a city, county or other smaller area may be a separate organisation, or it may rank as part of the police force, being under the command of the Chief Constable. If it is a part of the police force, its members receive standard pay in addition to special allowances. Those wishing to join a Fire Brigade that is a separate body must address applications
to the Superintendent at the Central Fire Station. For instance, applications for admission to the Fire Brigade of the London County Council must be made to the Chief Officer of that force at Southwark Bridge Road, S.E.

The members of a police force are subject to strict discipline, and their progress depends very largely on their observation of the rules laid down, and their capacity and willingness to obey orders. Their work calls for tact, courtesy and patience, but they must always be alert and tenacious. The duties vary considerably, ranging from patrol work to employment in special investigations, and in all cases are highly responsible in character. The normal tour of duty is eight hours, this being exclusive of any time spent in parading for service or waiting to be relieved, for no constable may leave his post until his successor is at hand.

The pay normally received by a probationer is $70 /-$ per week. At the end of the probationary period this is increased to $72 /-$ per week, and a further annual increase of $2 /$ - weekly brings this to $90 /$ - weekly at the end of ten years' service. A sergeant receives $100 /-$ per week on promotion, and periodic increases of $2 / 6$ lead to the maximum of $112 /-$ per week after five years' service in this rank. The pay of an inspector varies from 122/9 to 193 /per week, and that of a superintendent from $£ 450$ to $£ 700$ a year, depending in each case on the class of appoint ment held The salaries of Chief Constables also show large variations, those who control the forces of large cities or counties receiving much higher pay than the men holding similar positions in smaller areas,

It should be noted that the changes made last year in the interests of national economy have reduced the pay of constables by $4 / 3$ weekly, and that of sergeants by $5 / 6$ per week. Similarly the pay of entrants is now $55 /-$, while the salaries of those holding higher rank have been reduced by five per cent. It is understood that these reductions are temporary, and that they will be reviewed when financial conditions permit
Members of the police force are also granted allowances in respect of uniform and boots, and when engaged on special duties. In addition, every member is provided either with a house or quarters, or is given an allowance towards rent, the amount of this allowance depending on his rank. Free medical attendance is provided, and holidays on full pay are allowed. Further, there are pensions on a liberal scale. After serving 25 years a constable may retire on half-pay, or he may stay in the force until he has completed 30 years' service, his pension then being two-thirds of the pay received at retirement. An officer who has completed ten years' service or more, and is compelled to retire through ill-health, also is entitled to a pension on a lower scale, and a gratuity is awarded to men who retire for similar reasons after less than 10 years' service. The nature of his tasks makes it necessary to give a member of a police force special protection from the results of an injury, and if he should be rendered unfit for service as a result of an injury arising in carrying out his duties, he receives a pension for life, the amount depending on the degree of disablement. Pensions also are granted to widows of officers who die after completing five years' service. It will be seen that the special character of the work of the police is recognised by a complete system of safeguards and guaranteed awards.. So far we have been dealing with the

Continued on page 441)

Crane Driven by Compressed Air

When tunnels are being lined with heavy pre-cast blocks of concrete, the lack of room in which to work often makes it difficult to place the blocks in position, particularly when the upper half of the tunnel is being dealt with. A German engineer has produced a compressed air crane that may be used for this purpose. This is mounted on a wheeled underframe that runs along the rails usually laid down for the carriage of materials in the tunnel, and is provided with a jib that can be lengthened or shortened as required.

When the crane is in operation, only two men are required to carry out the work of lining a tunnel. The crane is controlled by one of them and lifts each block into place, while the second workman stands on an elevated platform in order to guide it into its exact position. Blocks up to 330 lb . in weight may be lifted by the crane, and even with unskilled labour may be laid at an average speed of one a minute.

Electric Power from French Canal

Early this month an interesting hydro-electric power station at Kembs, Alsace, is to be opened by the President of the French Republic. This station has been built at one of the locks of the Alsace Canal now being constructed from Basel to Strasbourg to enable river traffic to avoid difficult navigation on the Rhine between the two cities. A dam has been built across the Rhine about three miles from the Swiss frontier in order to give the necessary depth of water to the canal. When the waterway is finished it will have eight locks, and at each one a power station is to be built, the total output from which will be $650,000 \mathrm{kw}$.

The head of water available at Kembs will vary from 13 ft . to 18 ft . Six turboalternators are being installed in the station, which will have a total capacity of 186,000 k.w.

It is announced that a high-level bridge is to be built at Brisbane, Queensland. This will span the Brisbane River at Kangaroo Point, and is expected to cost about $\notin 2,000,000$.

L.M.S.R. Bridge Reconstruction

The L.M.S.R. timber bridge over the River Nene between Peterborough North and Peterborough East station is to be replaced by a steel structure, to be built by Braithwaite \& Co., Engineers, Ltd. The bridge will carry a double track and will

A stage in the mass production of motor cars. The machine shown bores and cotters

All-Welded Steel Building in London

The steel frame of a building now being erected in London has been joined together entirely by welding, not a single rivet having been employed. The building covers an area of $30,000 \mathrm{sq} . \mathrm{ft}$. and is 231 ft . in length and 160 ft . in width. A large clear floor space was desirable, for the building will be used to house machinery; and this has been obtained by giving it a roof with a span of 160 ft .

The building is divided into 33 bays, and in its construction 22 ordinary trusses and 110 of cantilever type have been used. These are placed at intervals of 13 ft .2 in . and are suspended from six girders that in turn are supported on 12 braced columns. There are more than 130 tons of steel in the framework of the building.

Giant British Planing Machine

An engineering firm at Johnstone, near Paisley, have recently completed a planing machine that is thought to be one of the largest ever constructed in this country. The machine has been built under contract for a Russian firm, and is to be employed in machining turbine casings required for a large Russian hydro-electric power scheme.

The planer weighs about 200 tons and is capable of taking work measuring 36 ft . by 13 ft . The driving motor develops 80 h.p., while the motor that gives the traversing movement is of 12.5 h.p. Lubrication is on the forced-feed system, and motors developing from one to three h.p. drive the pumps required for this purpose.

Clocks that Announce the Time

In order to avoid being disturbed by telephone subscribers who ring up to ask for the correct time, the authorities of the Paris Observatory have installed a number of talking clocks that actually announce the time to the nearest 10 seconds. A subscriber who wishes to take advantage of the new scheme asks his exchange for a certain number, and is automatically placed in communication with one of the clocks. It is claimed that the Paris Observatory is the only one equipped in this manner.

Electric Tramcars Travel at 60 m.p.h.

A new type of high-speed electric tramcar has been introduced on certain routes at Schenectady, in the state of New York. The cars are low and are carefully streamlined, and in front their roofs slope downward and their sides curve inward to meet in a point. They have a maximum speed of 60 $\mathrm{m} . \mathrm{p} . \mathrm{h}$. on the level, and may be accelerated as rapidly as a powerful motor car. Even when travelling at high speed, however, they may be pulled up in a few yards by means of the special pneumatic and magnetic brakes fitted to them.

Each car is 47 ft . in length and provides accommodation for 48 passengers. Specialattention has been paid to ventilation, and the air passing through each car enters at the floor level and passes through heaters before reaching the passenger accommodation. Spent air is withdrawn through ducts in the roof.

The new vehicles are very light, and in spite of their high maximum speeds require less electric power for operation than tramcars of older type. They are designed to be operated by one man, who opens the doors in front and at the rear when necessary by pressing a handle. Passengers may enter only through the front door, but may leave at either end of the car

Samples of Soil Pulled up by Crane

It is often necessary to obtain information concerning the sub-soils of districts in which building or engineering operations are to be carried out, and an interesting method of securing samples has been developed by an American company. Two steel girders are employed, shaped in such a manner that when placed side by side they form a closed casing. They are driven into the ground separately, the second being sunk alongside the first, and are then pulled up together. The core of earth brought up between them may be examined in detail, the positions and thicknesses of the strata bored through being clearly shown.

The new method has been employed in investigating various soils, including peat and clay. The greatest depth to which the girders have so far been driven in trials is 40 ft ., and a crane capable of developing a pull of about 75 tons has been employed to raise them.

The contract has been awarded for the first section of the work of enlarging the Grand Union Canal. This consists of the widening of locks between Warwick and Birmingham.

Hoisting Engine for South African Mine

Although it is unusual for a compound condensing engine to be employed for hoisting men, a large new engine of this type is being constructed by a Chesterfield engineering firm for service of this kind in the Daggafontein Mines in South Africa.

New Aluminium Alloy

An interesting alloy known as " aldrey," containing more than 98 per cent. of aluminium, with small proportions of iron, magnesium and silicon, has been produced by German engineers. The alloy has a tensile strength of about $44,000 \mathrm{lb}$. per sq. in. and its melting point is over $1,200^{\circ} \mathrm{F}$. It may be pressed and welded readily, but its most remarkable feature is its high electrical conductivity, for in this respect it is said to be as valuable as copper, the metal now employed for electrical transmission lines. In addition the alloy resists corrosion, and therefore is particularly suitable for use on transmission lines near the sea.
Light Tank Crosses Wide Ditches
A light tank capable of crossing ditches of a width greater than its own length has been introduced. The tank has short poles hinged on projecting arms in front and rear, and when it reaches a ditch that cannot be crossed

Engines of this type are not usually so employed because in the event of loss of vacuum in the condenser, a cage that is dropping to the bottom of the shaft can only be stopped by the main post brakes. The engine for South Africa, however, is fitted with a special secondary braking system that makes an accident almost

A view of the interior of the longest tunnel in France, through which passes the canal from Marseilles up the valley of the Rhone. The tunnel, which is $4 \frac{1}{2}$ miles in length, was completed in October 1926.
impossible if the vacuum should break down The engine has been designed to raise a load of $10,000 \mathrm{lb}$. from a vertical depth of $4,200 \mathrm{ft}$. at a maximum speed of $3,500 \mathrm{ft}$. per minute. It will not be required to operate at this speed, however, for ore will be raised at a speed of $3,000 \mathrm{ft}$. per minute, and with men in the cage, the speed will only be $2,600 \mathrm{ft}$. per minute. It is estimated that the cage will accelerate from rest to its maximum speed in 20 secs.
is only 767 ft . in height, and thus is little more than half as tall as the present record-holder. There are now three other buildings in New York taller than the Woolworth Building.

A Clydeside shipbuilding firm is at present building a floating dock for service in South Africa. The dock will be 250 ft . in length and will be shipped to its destination in sections and not towed out complete.

A Duplex Boring and Turning Mill Doing Two Independent Jobs at Once

SOME of the most interesting engineering developments in recent years have been connected with the improvement of the numerous types of machine tools used in modern workshops. Thirty years or so ago almost all metal machining was done by means of lathes, and these machines, sometimes assisted by a planing machine and a power drill, undertook practically all the machining carried out in many shops. In the absence of special machines most of the delicate finishing work on such jobs as bearings, eccentrics and valves had to be done by hand by highly skilled fitters. These methods were satisfactory so long as the time taken to carry out a job was of comparatively little importance. As the need for larger and more economical output has made itself felt, however, machine tool makers have been faced with the task of designing new types of machines to undertake more or less specialised operations such as boring, milling and gear cutting.

An interesting example of one of these modern machines is shown in the accompanying illustration. It is a duplex boring and turning mill designed for heavy-duty work. It operates in a manner somewhat similar to a lathe, except that the face-plate or chuck, in which the work to be machined is held, is in a horizontal position, thus allowing heavy work to be handled without imposing any undue shearing strain on the face-plate holding-down bolts or the bearings.

The machine is of the two-chuck type and can carry out two independent jobs simultaneously. To enable this to be done, each of the chucks is operated and controlled from an independent gearbox, which in turn is driven from the main drive. Each chuck is served by a specially-designed type of slide-rest equipped with a tool-box or tool-holder. The latter is of the rotating turret head type, so that various tools for rough cutting, finishing, etc., can be inserted for operation in succession. Each chuck is driven by spur gearing designed to overcome any tendency on the part of the chuck to lift in its bearings when the tool is taking a heavy cut. Directly underneath each chuck is a heavily-built V-shaped pressure ring that takes the downward thrust produced on the chuck when a heavy casting is being machined.

A particularly good feature of this machine is the speed-change gearing that controls the speed of the chucks. The gears are made of nickel-chrome steel
and are arranged in geometrical progression. They are interlocked so that the machinist cannot move the gear-change lever to effect a change in speed until he has first made sure that the main driving pulley is declutched from the power drive. This feature prevents jamming of the gears, with consequent wear and perhaps broken gear teeth.

The tool turrets each have five faces fitted with special tool-holders, thus enabling five different tools to be attached, any of which can be brought into operation as required. Automatic feeding of the tool in horizontal, vertical and angular directions is provided. Another good feature, and one that is very important when continuous high production is required, is that the gears controlling the traversing and the automatic feeding of the turrets are interlocked, so that traverse and feed can be operated simultaneously. This feature is made use of when it is required to cut a tapered bore in a job. For the latter work too, the tool can easily be set at the required cutting angle by means of a divided scale fitted on the turret swivel.
Ample lubrication is provided through a simple

A Duplex Boring and Turning Mill built by Webster \& Bennett Ltd., of Coventry, to whom we are indebted for our illustration. system of siphon tubes, which carry filtered oil to all the bearings. The speed and feed gears are lubricated on the splash system.

A machine of this type is especially useful in a modern locomotive repair shop, where it is often used in the machining of a piston head casting. Piston heads for steam engines have a tapered bore that fits over the tapered end of the piston rod, the head then being locked in position by a nut. Without machines specially adapted for the purpose, the cutting of this bore is a long operation requiring great care and accuracy in its execution. On a Duplex machine, however, the bore of one head can be machined on one chuck simultaneously with the cutting of the piston ring grooves in a second head by the other chuck and turret. The two heads are then simply changed over from one chuck to the other, and the remaining work on each head is then completed. Locomotive wheels and piston rings are other examples of work that can be done in record time on a machine of this kind.

II.-LONDON'S WATER SUPPLY

IN the previous article in this series we told how the Romans obtained abundant supplies of water for their cities by constructing long conduits to collect the water and convey it from the hills to the cities. Where a valley intercepted the route they carried the conduit across it on a stone structure known as an aqueduct, and we described some of these great aqueducts that still exist in Italy and Spain.
In Britain, as in almost every other country that the Romans occupied, many traces of their engineering skill remain, but there is no evidence that they constructed any large aqueducts here. Local streams and wells seem to have provided sufficient water to meet the requirements of the small communities, but some additional source of supply must have been necessary in the important cities, such as Londinium (London), where large garrisons and houses were established and public baths maintained. The water obtained from outside sources was conveyed through culverts or surface conduits into the cities, and there distributed through further surface conduits or lead pipes. It would take many pages of the "M.M." to relate in full the history of water engineering in Britain, and in this article we shall confine ourselves to the story of London's water supply. Whatever system the Romans employed to distribute water to the inhabitants of London soon fell into disuse after their departure, and until well into the 13th century Londoners obtained their supplies of water partly from streams that flowed near to or passed through the city, and partly from shallow wells sunk into the sands above the chalk. During this long period the population of London increased considerably, especially after the Norman Conquest, when many Normans settled in the city; and by the early part of the 13 th century the supply of pure water obtained from the wells had become quite inadequate.

In London, as in other cities, the Corporation were responsible for providing an ample supply of water, and in 1236 they obtained the consent of Parliament to construct a conduit to convey water from springs " in the manor of Tyburn." The Royal assent granted " to the citizens and their successors liberty to convey water from the manor of Tyburn by pipes of lead into their city." The document adds that the proposed conduit was "for the profit of the city, and the good of the whole realm thither repairing; to wit for the poor to drink, and the rich to dress their meat." The date of the laying of the conduit is given variously as 1237 and 1245 . The conduit terminated in a building called the Great Conduit House that was built at the Poultry end of Cheapside, and the cost of the work was met by a levy on the inhabitants of Cheapside and the Poultry. A. S. Foord, in his book "Springs, Streams and Spas of London," describes the conduit house as " a long and low stone building, battlemented, and

Sir Hugh Myddelton.
enclosing a large leaden cistern, the water of which issued from a cock into a square stone basin at the eastern end.'

Later conduits were constructed to bring water from springs in Hampstead, Highbury and other districts, and eventually there were nine conduits in use in London. In these conduits the water of a spring was led into a tank in a building erected either close to or actually over the spring. From the tank the water passed into the conduit and flowed through this to the distributing base, which, says Foord, " might be from one to three miles distant. Here the water was stored in a receptacle of great capacity, and drawn from cocks or taps, as it was required. No mechanical contrivance was used either to raise the water into the cistern or to accelerate its passage through the pipes. All depended upon the very slight downward gradient necessary to ensure a steady flow of water; and indeed this fundamental principle of gradient was the only known method of water conveyance in the Middle Ages." Once every year the Lord Mayor and Aldermen made a tour of inspection of the conduits.

In addition to drawing water at the conduit houses the people could obtain supplies from hawkers known as " water carriers," who filled their tankards at the same source. A tankard was a cone-shaped vessel with a small iron handle at the neck by which it could be carried easily on the shoulders. It has a capacity of about three gallons, and was fitted with a bung to prevent the water from splashing out as the vessel was being carried. Larger quantities were drawn from the Thames and carried in wooden tubs called "tynes," two of these being hung from a pole slung across the carrier's shoulders. The water drawn from the Thames was far from pure owing to the accumulation of dirt on the banks of the river; in fact the water was polluted to such an extent that in 1345 the carriers who filled their vessels at Dowdgate Dock ceased to draw water until the dock had been cleaned. In other parts, however, the river continued to be polluted, and in 1357 King Edward III addressed a sharply worded letter on the subject to the Mayor and Sheriffs of London.

During the 15 th and 16 th centuries additional conduits were constructed to cope with the demand of the growing population. The Corporation watched very carefully over their conduits and severely punished any person found interfering with the flow of water through them. In 1478 they discovered that William Campion, a resident in Fleet Street, had cunningly tapped a conduit laid past his door so that some of the water flowed into a well in his house. Campion was brought before the Lord Mayor and Aldermen and afterward kept in gaol for some time. In
"Lives of the Engineers." Smiles relates that Campion was then " set upon a horse with a
vessel like unto a conduit placed upon his head, which being filled with water running out of small pipes from the same vessel, he was taken round all the conduits of the city, and the Lord Mayor's proclamation of his offence and the reason for his punishment was then read. When the conduit had run itself empty over the culprit, it was filled again." On completion of his unpleasant tour Campion was marched back to gaol for further detention.

Although it was illegal, the practice of laying short pipes from the conduits into private hous es gradually increased, and the amount of water that reached the conduit houses diminished accordingly. This state of affairs led to frequent disputes between the w a t e r carriers for precedence in filling their tankards. Sometimes these disputes developed into riots, and at length the

The stone paved floor of the Round Pond constructed by Sir Hugh Myddelton in 1613. For the illustrations on this and the opposite page
the Corporation to conduct a stream of pure water to the north parts of London from the springs of Chadwell and Amwell in Hertfordshire by means of a trench not more than 10 ft . wide, but at first no one could be found to undertake the work. In 1606 a man named William Inglebert proposed to construct brick trenches from the springs to London, but nothing definite was decided. Two years later a Captain Edmond Colthurst offered to carry out the scheme, but on being informed that the Corporation would not share any of the cost he withdrew his offer.

The prevalence of fever among the population added to the urgency of the project, and the prospect of the citizens continuing to suffer indefinitely from a shortage of pure water greatly troubled H u g h Myddelton, Member of Parliament for Denbigh, who had developed a special interest in proposals to improve London's

Lord Mayor intervened and forbade anyone visiting the conduits armed with clubs and staves. This restriction did not make good the shortage of water, however, and as time went on the need for additional supplies became greater.

In 1582 a Dutchman named Peter Morice undertook to convey water from the Thames to the city inhabitants by mechanical means, and the Corporation readily gave him permission to make the attempt. Morice erected in the first arch of the London Bridge an ingenious pumping engine operated by a water wheel driven by the rise and fall of the tide, which rushed through the arches with considerable velocity. The engin e forced the w a t er through leaden pipes which were laid to the various houses. His contrivance succeeded beyond expectations, and at a public demonstration of its efficiency Morice astounded the Lord Mayor and Aldermen of the

Another view of the Round_Pond. The Metropolitan Water Board Offices now stand on part of the site.
water supply. Finally he lost patience at the repeated delays of the Corporation, and declared boldly: " If no one else will undertake this work, I will do so, and execute it at my own cost." He undertook to complete the work in four years.

Myddelton's offer was a courageous one, for he was not an engineer, an architect or even a builder, but simply a goldsmith. Beginning his career as an apprentice of the Guild of the Goldsmiths' Company, in London, he eventually established a business of his own in what is now Basinghall Street. The business of a goldsmith in those days was one of great importance and dignity, and Myddelton's shop appears to have become quite a fashionable place of resort. Among his clients Myddelton numbered K i $n \mathrm{~g}$ James I, who on one occasion purchased for Queen A $n \mathrm{n}$ e a jewel costing $£ 250$ According to an interesting tradition h anded down for many genercity by throwing water over St. Magnus's steeple! The machinery worked so well, in fact, that a few years later the engineer was authorised to use the second arch of the bridge for the same purpose.

Morice's machinery was not adequate to supply all the water needed, however, and toward the end of Queen Elizabeth's reign the Corporation obtained an Act authorising them to cut a river from any part of Hertfordshire or Middlesex. Ten years was allowed by the Act for the work to be carried out. Many plans were considered but no river was cut, for the Corporation showed little inclination to provide all or even a part of the necessary funds, and the Act lapsed without any practical steps having been taken. In 1605 another Act was obtained. This one authorised
ations, Myddelton and Walter Raleigh used to sit together at the door of the former's shop and smoke the newly-introduced weed, tobacco. Their action created considerable amazement among passers by, who stood in groups to watch!

When the Corporation learned that Myddelton was prepared to stand the expense of the project himself, they ignored the fact that he was merely a goldsmith, and readily authorised him to proceed. They were, in fact, only too glad to hear of someone venturesome enough to take on the job. An agreement was signed by Myddelton and the Corporation in April, 1609, and shortly afterwards excavations were begun at the Chadwell Spring, near Ware.

An unexpected trouble now arose. The occupiers of land to be entered upon by the "New River " strenuously opposed the work, declaring that their meadows would be turned into marshes, that their farms would be "mangled " and their fields cut up into small pieces. They argued that the New River would be no better than a deep ditch, equally dangerous to men and cattle, and that heavy rains would most certainly cause it to overflow and flood their lands. Parliament proved unable to settle this determined opposition and the trouble increased to such an extent that by 1612 the whole scheme was threatened with disaster.

In desperation Myddelton appealed to James I for support. The route of the New River lay through the Royal Park at Theobalds, where probably the King had seen the men at work. At any rate Myddelton was favourably received and after some discussion the King resolved to support the project. An agreement, so long that it covered seven skins, was duly drawn up and signed, in which the King undertook to share half the cost of the whole scheme, and also granted Myddelton a right of way through any of the Royal Estates upon which it might be found necessary to encroach in carrying out the works.

The distance from Ware to London is only about 20 miles, but the New River when finished was nearly 40 miles long. This additional length was the result of the attempt to maintain the river as much as possible at the level of the Chadwell Spring, and at the same time to avoid deep cuttings and large embankments. In order to do this it was necessary to follow a winding course around the hills, crossing each valley at the most favourable point. The fall of the stream averaged about 2 ft . per mile. Where this proved to be inconveniently rapid a stop-gate, from 3 ft . to 4 ft . in height, was erected across the stream, the water passing over this to the lower level.

The embankments and valley crossings were from 8 ft . to 10 ft . in height, the earth excavated on the higher side of the cutting being used to build up the bank on the lower side. In some cases these earthworks intercepted the passage of surface water to the river Lea, the natural drain of the district. Where this occurred the drainage water was conveyed under the New River in culverts, or over it by what were called
flashes." The flashes consisted of wooden troughs about 12 ft . in width and 3 ft . in depth extending across the river.

The New River was constructed with an average width of 10 ft . and was crossed by more than 150 bridges. An important item in the scheme was the building of the Bush Hill Aqueduct near Edmonton. There the New River was carried over a stream flowing from Enfield Chase by means of a brick arch that carried a strongly timbered lead-lined trough. This trough was 660 ft . in length and 5 ft . in depth and contained 80 brick piers $2 \frac{1}{2} \mathrm{ft}$. in height, upon which were erected stout timber posts 6 ft . in height. Cross timbers were laid and strengthened by intermediate uprights. A similar aqueduct was erected on the embankment near Islington. This was 460 ft . in length and 17 ft . in height and was nicknamed Myddelton's Boarded River.'
At Islington the New River passed through a tunnel of considerable length and emerged at the reservoir named the "New River Head." Previously this had been an unused pool known as the "Ducking Pond," and Myddelton enlarged it and made a proper embankment.

The opening of the flood-gates at the Islington Reservoir was carried out on 29th September, 1613, with great ceremony. The inrush of the pure water was greeted by the cheers of thousands of enthusiastic spectators, mingled with the firing of guns, the pealing of bells and the sound of trumpets and drums. In appreciation of the completion of this valuable work the King conferred upon Myddelton the honour of knighthood.

One unit of the powerful pumping plant at the Walton Works of the Metropolitan Water Board. This triple expansion engine is designed to pump $17 \frac{1}{2}$ million gallons per day against a maximum head of 267 ft .

The New River Company distributed the fresh water by means of some 400 miles of wooden piping laid through the London streets. The pipes consisted of tree trunks bored to a diameter of about 7 in . At the large end of each pipe the hole was enlarged to form a conical socket, and the small end was cut to the shape of a cone so that it fitted neatly into the broad end of the preceding length of pipe. Generally elm trunks were used, as this wood can be exposed to water or damp earth for a long time before rotting. The New River Company's pipes as a whole, however, were affected seriously by weather conditions, and although the mains were shut off every night to prevent waste as much as possible, the loss of water by leakage during the daytime and by pipes bursting under pressure was estimated by the Company's engineer to amount to almost a quarter of the total water distributed through the system. Ultimately the wooden pipes were replaced by pipes made of cast iron.
For a long time people remained prejudiced against water that had been brought through pipes of any kind. The water carriers, realising that they were in danger of losing their trade, naturally made the most of this public fear, and hawked their fresh water with cries of: "Fresh and fair New River water. None of your pipe sludge !

The part played by the King in the making of the New River was brought back to him a few years later in a rather unpleasant manner. While he was out riding one winter day at Theobalds, accompanied by his son Prince Charles, his horse stumbled and fell, throwing him headlong into the New River which was thinly frozen over at the time. The King disappeared under the ice until only his boots remained visible. He was promptly hauled out and was able to ride back to the palace, three miles away, where he quickly retired to bed. Although he was none the worse for the mishap, the King regarded it as due to negligence on the part of Myddelton and the Corporation of London in not properly fencing off the river.

For just over 100 years the New River Company was the only company by which water was supplied to London. During that period many miles of piping was laid underground, an important additional supply of water was obtained from the River Lea, and large reservoirs were constructed. In 1721 or 1723 the Chelsea Water Company was formed and began to supply water from the Thames to Westminster and the neighbouring districts. This company is best remembered as having laid the first cast iron water main in London. This pipe was 1 ft . in diameter and was laid during 1740 at a cost of $£ 2,740$.
Other water companies came into existence at irregular intervals, and by 1823 eight companies were systematically supplying water to the inhabitants of London. Some of these companies drew water from the Thames as far down as Battersea and London Bridge, but in 1852 an Act was passed that compelled all the London water companies utilising Thames water to obtain it from the river above Teddington Lock, the tidal limit of the river. The care of the river above this point is entrusted to the Thames Conservancy, who see that the water is not polluted by factories or by sewage.

Early in 1904 the undertakings of the eight London water companies passed to the Metropolitan Water Board, which since that time has controlled the whole of London's water supply. The Board have continued to develop the water supply and to-day the area of supply exceeds 560 square miles, and the distribution system includes 7,322 miles of pipes. Additional reservoirs have been built from time to time, and the 49 storage reservoirs now in use have a total capacity of 19,657 million gallons, or sufficient to supply the whole world with a gallon of water per head for 10 days. This figure is an increase of $15,541.3$ million gallons over the storage reservoir capacity when the Board assumed complete control in 1904.

Artists of Prehistoric Times Paintings and Carvings on Walls of Caves

TTHERE must be very few people who are not interested in the races that inhabited the earth in the days before history. Naturally we know very little about them, for their remains consist for the most part only of a few bones and tools dug out of layers of earth and gravel that have hidden them for centuries. These have been discovered in many parts of the earth, and are occasionally turned up during digging and excavation work, every find adding to our knowledge of people of bygone ages. The task of trying to reconstruct the daily life of the people who lived thousands of years ago from these relics has led to many surprising and fascinating results.
The implements used by the early inhabitants of the earth are particularly interesting. The earliestknown men used tools and weapons made of bone or stone. For example, they fashioned beautifully sharp and efficient needles from small fishbones, and learned to make useful axes by binding sharp-edged flints to wooden handles by means of thongs of skin or hide. They were very skilful in chipping flints in order to give them keen edges, and because of the great use they made of stone, the era in which they lived has been called the Stone Age.

We do not know for certain how long this Age lasted or when it began. In certain parts of the earth it may almost be said to exist to this day, for the savage tribes of Central
Australia and the Eskimos of the far north are dependent upon resources similar to those of the earliest inhabitants of Europe. In this country, and in most of the populous regions of the earth, the Stone Age was brought to an end by the discovery of copper and bronze, materials that were far more suitable than flint for making tools. The Bronze Age that followed was eventually replaced by the Iron Age, in which we may still be said to be living.

It is so long since the men of the Stone Age ruled the earth, and we have so little knowledge of their resources, that we are apt to look upon them as a race of ignorant savages. But it is very doubtful if they were quite so uncivilised as we may be inclined to think. They appear to have been organised into communities, and the surprising discovery has been made that in certain districts they developed wonderfully artistic tastes and showed great skill in expressing them.

Naturally the materials with which these early artists worked were very unpromising. Instead of the well-lighted studios of modern times, they had dark
 caves in which the gloom was relieved only by the feeble light of stone lamps in which marrow fat was burned. The walls of the caves served as canvases for the painters, and on them figures in relief also were carved by sculptors provided with crude tools made of bone or flint.

The subjects chiefly favoured by prehistoric artists were animals. These they have depicted
with astonishing skill, and their paintings, drawings and carvings are full of vigour and action. In fact, they are so good that when they were discovered many people could scarcely believe them to be of ancient origin. There is very little doubt, however, that they were made long before the beginnings of history. This is clearly shown by the romantic manner in which one of the most famous of the caves containing them was discovered. In 1868 a hunter of Altamira, in northern Spain, ran a fox to earth. When he attempted to dig it out he was astonished to find that he had uncovered the entrance to an extensive cave system. The nature of the soil that he dug out proved that for thousands of years access to the caves had been completely prevented, and yet within them there may be seen one of the most remarkable series of rock paintings and sculptures yet discovered.

In many other instances excavations in caves have been necessary in order to uncover the paintings, and centuries must have passed in the accumulation of the deposits under which the works of the unknown artists had been buried. For example, in a cave in the Pyrenees, elaborate carvings, and the actual stone tools with which they may have been executed, were found at the bottom of a layer of soil and debris on the floor, and with them the skeleton of a man of the Stone Age. It is quite reasonable to assume
e cave in which he had carried out his work, and that the skeleton was his.

Those who worked in colour undoubtedly used a rough form of palette on which to mix their paints. These were made from marrow fat, with which earths of various kinds were mixed in order to produce different colours. The chjef materials used were iron ores, the colours of which were red, orange, brown and yellow. A black pigment was usually formed by mixing charred bones or similar material with the fat, although in some instances the mineral known as pyrolusite was used for this purpose. In the early days of Stone Age artistic development these represented the entire colour range. Later a white paint was made by grinding up kaolin, or China clay, with marrow fat in exactly the same manner as was done in preparing other colours. These were stored in hollow marrow bones until required, and many of these ancient paint tubes have been found with remains of the pigments still in them.

It is curious to find that many of the most impressive of the paintings and sculptures of these ancient artists were made in places that were very difficult of access. Instances are known in which it is necessary to squeeze sideways through very narrow openings in order to find the rock surfaces on which painting or carving has been done. In one remarkable case the work actually has been carried out on the ceiling of a very low portion of the farthest corner of a cave, and those who wish to

 something of the means that he adopted, for there are still men who use similar means. These are the Eskimos. Since coming into contact with modern civilisation, the conditions under which these people exist have greatly improved, but many of them use lamps made of stone in which they burn marrow fat with the aid of a wick made of moss. Finds made in the caves inhabited by the Stone Age men of Europe show that they also used lamps of this kind, but more commonly they burnt the fat in rough vessels made from the skulls of animals.

It is not easy to say why the drawings and paintings were made. At first thought it might be supposed that they were done purely for ornamental purposes, but the curious positions in which some of them are found, and their strange nature, suggest that a simple form of magic was involved in them.

The chief European centres of the art of the prehistoric cave men are Southern France, the Pyrenees, and Northern Spain. On the walls of caves in these three districts may be seen drawings of mammoths, bison, lions, bears and other creatures that to-day are found only in other climates, or actually are extinct. These drawings are vigorous and lifelike, as may be seen from the examples reproduced on these pages, and the fact that the animals represented in them have been unknown in France and Spain for thousands of years is a further proof of the antiquity of the drawings.

The animal that figures most prominently in the pictures of prehistoric artists is the bison. To-day this is found only in North America, where less than 100 years ago millions of bison roamed the prairies. The animal must have been of great importance in prehistoric Europe during the Stone Age. Probably the men of that time depended very largely on it for food, and many of the most spirited drawings they made actually show bison hunts in progress. But the artistic spirit and vigour is confined to the representations of the animals, for curiously enough these ancient artists did their worst work when they tried to draw human beings.

Among other animals represented in the rock paintings of bygone ages are the horse and the chamois. Fishes also were familiar to the prehistoric race to which the artists belonged, and salmon and trout may be recognised in their works. Birds are seldom included in the pictures.

So far we have dealt only with Europe, but in South Africa also remarkable prehistoric work is found. In various parts of that country, from Rhodesia in the north to the mountainous districts in the south, there are peculiar ridges of overhanging rock known by the name of " krans." These form the typical rock shelters in which the prehistoric inhabitants of the country lived, and prehistoric paintings and carvings are found on their walls. The greatest number of these, and those in which the greatest skill has been shown, are found in caves overlooking the larger rivers of the country.

The materials at the disposal of the South African artists were very similar to those employed in Europe. Their pigments were mineral ores of various colours, and were prepared for use by grinding them to powder and mixing them with animal fat. Apparently the outline of a design was first drawn with a burnt stick, and the paint then smeared on the rock by means of a crude brush made of feathers or specially prepared animal tendons.

A rock carving showing an exciting incident of prehistoric days in the Transvaal. It represents a black rhinoceros throwing a boy into the air with a swing of its enormous head.

As a rule the entire design is filled in with colour, but sometimes the outline is traced in a different tint.

The South African rock paintings reflect the daily life of the race to which the artists belonged. They include representations
 of domestic occupations, and hunting incidents and symbolic dances are prominent among the subjects illustrated. The pictures of animals are drawn most realistically, and there is no difficulty in recognising in them elephants, lions, giraffes, wilde-beest, antelopes and other creatures that are characteristic of South Africa at the present day. The drawings are by no means primitive in character, but show as high a standard of intelligence and artistic taste as those found in the caves occupied by the prehistoric inhabitants of Europe. In fact, the resemblance between the two series of paintings is so striking that a common origin has been suggested for the races responsible for them.

In Africa much of the work takes the form of rock carvings, or petroglyphs. As our large illustrations show, these are particularly magnificent. The two reproduced were discovered in 1908 in the South Western Transvaal by Mr. C. J Swierstra, now Director of the Transvaal Museum. The artists who executed them were evidently familiar with the animal life of their time, for each of the carvings depicts a type of rhinoceros in a strikingly lifelike attitude. One of them shows a black rhinoceros in the act of tossing a boy into the air. There can be little doubt that the carver of this remarkable petroglyph had actually seen an incident of this kind, for the picture enables us to imagine the whole episode. It is quite clear that the animal has charged with lowered head and by a vigorous effort is about to throw the boy upward.
The other petroglyph is even more remarkable. It represents a white rhinoceros attended by tick-birds. These are small white birds, a little larger than pigeons, which in certain portions of Africa follow cattle and other animaks in order to prey on the parasites that infest their bodies. The petroglyphs undoubtedly were carved thousands of years ago, but it is quite clear that the human beings who then inhabited South Africa were familiar with the remarkable habits of these birds,
Formerly it was thought that the paintings and rock carvings discovered in South Africa were the work of the ancestors of the Bushmen, a race of small but hardy hunters and trappers that remained in undisturbed possession of South Africa for many centuries. They were not attractive in appearance, for they had broad noses and projecting jaws, and their limbs seemed incapable of carrying the weight of their bodies. They lived on the animals they shot with primitive bows and arrows, and on edible roots and plants, for they knew nothing of agriculture, and had no permanent homes. The race began to decline when other negro tribes entered South Africa from the north. About 100 years ago Bushmen were still fairly numerous in the Cape Provinces and in the Orange Free State, but to-day very few remain, and it is necessary to visit caves in remote parts of the country, such as the Kalahari desert, in order to find them.

It has always been a matter of some surprise that the ancestors of the Bushmen should have produced such magnificent art treasures as the rock paintings and carvings of South Africa, for the present-day representatives of the primitive inhabitants of the country are so degenerate that it is impossible to imagine them ever to have been possessed of artistic taste and skill. Examination of fossilised skulls and other remains
(Continued on page 462)

Rubber Cored Golf Balls
 The Dunlop Works at Birmingham

IF an attempt were made to estimate the relative popularity of various games, there is no doubt that golf would stand very high in the list. To-day this game is an international recreation, and is played by young and old alike.

Scotland is the traditional home of what is often called "the royal and ancient game," and it was so popular there more than 500 years ago that the Scottish Parliament decreed that it should be " utterly cryit doune." The authorities were troubled because so much time was devoted to golf and football, and strongly recommended that archery practice should be substituted for what were then regarded as undesirable recreations! But it was impossible to prevent the spread of golf, and this definitely became the national game when it found favour with the Stuart kings. James VI was a noted golfer, and it is recorded that in 1618 he gave a monopoly of ball-making in Scotland for 21 years to one James Melville. The price of Melville's balls were not to exceed 4/-, a large sum in those days; and any balls found not to bear the authorised maker's mark were liable to confiscation.

When James VI became King of England he continued his interest in golf, and this fact was largely responsible for the introduction of the game into England. In the early years of his reign it was played at Blackheath, which was the first English centre of the game.

The early Scottish game was similar to that now played, but the clubs and balls were very crude. The clubs employed in Stuart times "were roughly-shaped pieces of wood, while the balls were merely leather skins so tightly packed with feathers that they were extremely hard. These balls were erratic in flight, and were incapable of rebounding well or of travelling easily along the ground.

The first improvement in golf balls came during last century, when the use of gutta percha was introduced by an unknown inventor. Gutta percha resembles rubber in being formed by the coagulation of a juice derived from a tree, its chief source being South America, from which it is exported in large quantities.

Unlike rubber, gutta percha is hard when cold, but becomes plastic when warmed and then readily takes the shape of a mould. The earliest balls made from it were smooth-faced, but it was discovered that they flew
better when they had been marked by being " topped " once or twice with an iron club. This led to the practice of cutting grooves on their surface, and subsequently regular markings were made by means of the moulds in which the balls were pressed.

The gutta percha ball, familiarly known as the "gutty," remained in favour from about 1848 until the beginning of the present century, when the rubber-cored ball was introduced. A well-made ball with a centre of this material has a long, straight carry when truly hit, runs well on the ground, and can be relied upon to maintain a true line when putting, a very important part of the game. The use of rubber therefore was a great step forward, and together with improvements in the design of clubs and the layout of courses, led

Columns of the moulds in which golf balls are given their final shape. The moulds enclosing the balls are lowered into hot water for a short time in order to make the gutta percha coverings plastic. For the illustrations to this article we are indebted to the Dunlop Rubber Co. Ltd.

to a remarkable increase in the popularity of the game.
Since the introduction of the first rubber-cored balls much ingenuity has been expend-

One of the lathes on which sheets of prepared rubber are cut into the " tape " and "thread " used for winding round the cores of golf balls. The circular knife revolyes at a speed of $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. ed on the problem of ensuring their good flying qualities, uniformity and durability. The Dunlop Rubber Company are preeminent in work of this kind, and many remarkable machines may be seen at Fort Dunlop, the factory in Birmingham in which the balls produced by the Company are made. These are carefully tested at every stage of their manufacture, and it may safely be said that only in very rare instances can failure to fly well through the air, or to run accurately on the ground, be charged to the manufacturer.

The first stage in the making of a golf ball is the preparation of the rubber. Raw material arriving at Fort Dunlop is cut up and passed through rollers that stretch and tear it, water being played on it in order to wash out the dirt. It is then dried in cellars supplied with warm air.
Pure rubber itself is too soft for use in the manufacture of golf balls, and before proceeding further it must be treated with various
chemicals. The most important of these is sulphur, which combines with it under the influence of heat and causes vulcanisation, a process that makes the rubber very tough and elastic. The vulcanised rubber is rolled into thin sheets from 70 yds. to 80 yds . in length. Each sheet is wound on a drum that is placed on a large lathe from 8 ft . to 10 ft . in length, and as it is rotated on this, a circular knife running along the machine cuts it into strips of the required width. Some of these strips are known as "tape" and others as "thread," and both are prepared for wrapping round the centres of the balls at later stages of the process of manufacture. The long strands are stripped from the machine by hand, and after being disentangled on combing drums they are wound on bobbins.

The centres round which the tape and thread are wrapped consist of small rubber bags containing a heavy paste, the nature of which is kept secret. Each bag is weighed in order to make sure that it contains the correct amount of paste, and its neck is tied with elastic thread Other tests are then applied, and if the centre is satisfactory winding begins. Tape is wrap ped round first. This operation is commenced by hand, trained workers wrapping a strip about 12 in . in length evenly and accurately round the core; and is completed by means of machines in which the centres are revolved rapidly and eccentrically in order that the tape may be distributed evenly. During winding the thin rubber strip added is stretched to four times its original length, and great care is necessary at this stage, for the resiliency of the finished golf ball largely depends upon the accuracy with which the tape is put on.

The centre is built up in this manner until it reaches a certain size, and the rubber thread is then wound over it. This is fed to the ball through a device that stretches it, and during the winding the core is rotated and twisted between steel rollers in order to ensure that the finished product is perfectly round. This completes the making of the inner portion of the ball, which now only lacks a cover; but before this is added the ball is again tested for size, compression and weight.

The cover of a golf ball is fitted in stages, the material of which it is made being applied to each half separately. Each centre is slightly smeared with gutta percha, and is passed to an operator who holds it in a stream of this substance issuing from an opening in an automatic machine that supplies the exact quantity required to make half the cover. The ball is then pressed into a metal mould that roughly shapes the portion of the covering material added. The mould is one of a large number on a revolving table that is thoroughly cooled by means of refrigerating machinery, and in it the gutta percha covering quickly solidifies,

The second half of the cover of each centre is added in a similar manner, and the roughly-formed balls are then placed in a covered rack that carries them slowly forward into a drying chamber There they are lost to view for 36 hours, for the machinery is so
arranged that it is impossible to remove them until they have spent this period of time inside the chamber, the thorough dryingout of each ball thus being ensured.

Except for the paint, the whole of the material required for each golf ball has now been assembled, and the, products are ready for the moulding and pressing that gives them their form. They are not allowed to go on to the finished stage until they have been weighed, however, and for this test they pass over an automatic machine that detects variations in weight of as little as one thousandth of an ounce. A conveyor then carries the balls to the moulding machine, where they are placed in moulds, formed in two sections, that have the Dunlop pattern marked on them. They are stacked in a column, and pressure is applied by means of a hydraulic ram in order to enable the screw clamps of the moulds to be tightened. Each column is then picked up by a travelling overhead crane and lowered into hot water, the gutta percha coverings of the balls being made plastic by the rise in temperature. After a short time in the hot bath the column of moulds is lowered into cold water, where it remains until the balls are cold.

The balls require painting when they emerge from the moulds in which they are pressed. Many experiments have been made in order to discover the best means of applying the paint, and it is interesting to find that the most satisfactory results are 1 between the palms of the hands, obtained by simply rolling each ball between the palms of the haced,
in which a small amount of paint has previously been placed. When the paint is dry the special marks are picked out in colour. This is not difficult, for the markings already have been impressed on the cover during the moulding, and it is only necessary to fill these evenly and thinly with coloured paint.

Painting is the last operation in the manufacture of a golf ball, and when this has been completed all that remains before packing is a final test. Each ball in turn is placed on the scale of a very delicate balance in order to make sure that it weighs exactly 1.62 oz . Then it enters a machine in which it is automatically wrapped and the package sealed. As each ball is dealt with, the machine cuts off a piece of paper of the right size, makes four folds in it, and tucks in the ends round the ball to complete the wrapping. Finally it damps the adhesive side of a seal and places it in the correct position on the wrapper. It is then a simple matter to pick up the little package as it leaves the machine and to place it along with others in boxes ready to be enthusiasts.
A special feature of the manufacture of golf balls at Fort Dunlop is the number of times that these undergo tests. They are carefully measured and weighed at almost every stage in order to ensure that the finished balls shall be uniform, and in addition a selected number from each consignment actually are driven by means of an automatic machine in which they are struck with unerring accuracy and constant strength. This is a splendid test of carrying power, for each ball leaves the machine at
(Continued on page 462)

Airport Beacon to Act as a Clock

Novel means are being taken to enable the inhabitants of Guayaquil to tell the time at night. Guayaquil is the capital of Ecuador, the South American republic, and a Moorish clock tower is being erected in gardens on the sea front. A large airport beacon is to be mounted on top of the tower. This will make a complete revolution in twelve hours, and time will be indicated by the direction of the beam. The use of the clock will be made easier by the fact that at certain hours prominent landmarks in the city and its surroundings will be illuminated. Thus at night the city itself is to be the dial of this remarkable clock.

The beacon is fitted with a 1,000 -watt lamp supplied by the General Electric Company of New York. It is to be controlled by an electric clock from which current impulses will be transmitted every fiye seconds to energise mechanism causing the beacon to rotate through a small angle.

Metals Melted by Means of Burning Mirror

There have been many stories of the use of large curved mirrors capable of concentrating the heat of the Sun and of directing it against hostile ships. Archimedes, the famous Greek scientist who lived in Syracuse, Sicily, in the 3rd century before Christ, is said to have invented an enormous burning glass of this kind for the purpose of setting fire to the ships of the Roman besiegers of the city. A large burning mirror constructed in more recent times in Sweden for a similar purpose is still to be seen in the Artillery Museum of Stockholm, but it is scarcely likely that either Archimedes' mirror or that at Stockholm was very effective!

On a small scale very high temperatures have been obtained by focussing the rays of a powerful arc lamp on a small area by means of a parabolic mirror similar to the reflectors used in searchlights. It is claimed that in these experiments the temperature at the focus of the rays was above $2,100^{\circ} \mathrm{C}$. In another trial it is said that a small piece of platinum was melted in the short time of four minutes.

Windowless House of Perpetual Spring

A house without windows has been designed by the Westinghouse Electric and Manufacturing Company. This is heated, ventilated and lighted entirely by electrical means and the effect is to create in it what may be described as a perpetual spring-like atmosphere.

The method of heating adopted in this remarkable house is very ingenious. It is the loss of bodily heat that makes us feel cold and it has been found that about half of this is due to radiation. Small heaters have been fixed behind panels on the inner walls of the house in order to provide counter radiation, therefore; and these also supply the additional heat required to compensate the occupants for loss of heat due to evaporation of moisture from
the skin and to convection, or the transference of heat by means the skin and to convection, or the transference of heat by means of air currents. Both these effects are diminished by careful ventilation and regulation of the proportion of moisture in the air and by controlling the air currents. Lighting is supplied by electric lamps that radiate ultra-violet rays. In ordinary houses these rays are not usually present, those reaching the Earth from the Sun being cut off by clouds or unsuitable glass.

A Newspaper Museum

One of the most remarkable museums in the world contains the largest collection of newspapers that is open to the general public. It is at Aix-la-Chapelle, and the 15,000 newspapers exhibited include curiosities from all countries, and in almost all languages, ranging from old manuscript newspapers to a journal published for Eskimos. Other interesting exhibits are a spiritualist newspaper printed in white on black paper and a socialist newspaper of 1849 on dark red paper, while the collection also includes a copy of the Cologne "Volkszeitung" of 31st October, 1889, that is printed in gold letters.

Six Thousand Million Letters a Year

The British Post Office now handles more than ten times as many letters as it did in 1859, when $577,121,000$ were delivered in this country. The approximate number of letters now dealt with annually is more than $6,000,000,000$.

The postcard still lags behind the letter in popularity, but has made great strides since its introduction sixty years ago. On the first day on which postcards were issued, eager curio hunters fought furiously to secure specimens and the crowd of buyers in St. Martin's le Grand was so great that police regulation became necessary. In the first year $75,000,000$ postcards were used, and the traffic in postcards increased to enormous proportions when the picture postcard was introduced in 1894. Raising the postage to 1d. in 1918 checked the expansion, but the number sold is now steadily increasing and in 1928, the last year for which figures are obtainable, was $470,000,000$.

Remarkable Air Beacon at Chicago

The Pharos, or lighthouse, of Alexandria was a guide to the mariners of 2,000 years ago both by day and night. On it there was an enormous mirror of polished metal that reflected the Sun's rays by day and was illuminated by torchlight at night, when it was visible from a distance of several miles. A modern lighthouse built on similar principles has been erected at Chicago in order to act as a guide to airmen. Neon lamps are employed as the source of illumination, and their reddish-orange glow is concentrated into beams by means of eight parabolic mirrors, each of which is five ft . in height. These beams are visible at much greater distances than the glow of the neon tubes used in other beacons. As is the case with ordinary lighthouses,
the Chicago air beacon flashes in accordance with an arranged code that enables it to Eight $24-\mathrm{in}$. searchlights are placed at the foot of the beacon, and two opposite beams of white light from these are successively extinguished at regular intervals in a counter-clockwise direction. This gives the same effect as rotating the beams, and airmen will have no doubt of their approach to Chicago when they see a beacon with eight stationary orange beams under which appear six apparently rotating shafts of white light.

Plants Grown in Electrically-Heated Soil

A Japanese market gardener in California recently tried the experiment of growing cucumbers in electrically-heated soil. He buried 700 ft . of insulated copper wire under a small plot, and connected it to the 110 v . electric mains, installing also a device that automatically switched on current when the temperature fell below $70^{\circ} \mathrm{F}$. Current actually flowed for an average length of time of a little less than ten hours daily, and the effect of the continual warmth was seen in the early ripening of the plants.
treated in a similar plants but grown in unheated soil, ripened much later, and yielded fewer and smaller cucumbers. The higher price realised for the early cucumbers more than compensated for the cost of heating the soil.

An Ancient Craft

An ounce of gold may be beaten out to cover an area of no less than 175 sq . ft., and the sheets of gold leaf produced would be so thin that a pile 1 in . in height would contain no fewer than 167,000 of them.

The art of beating gold leaf is one that has remained practically unchanged for thousands of years, for no better method of making it has been discovered than the ancient one of hammering thin sheets of the metal placed between layers of goldbeater's skin. The skin is prepared from portions of the intestines of cattle and sheep by careful washing and drying, and is the only thin material known that is sufficiently tough to withstand the repeated blows of the goldBeater's hammer.

Testing Welds Without Destroying Them

An interesting method of testing the soundness of welds in metal has been developed in the Research Laboratory of the Westinghouse Electric Company. This completely avoids the necessity for cutting the metal, while ensuring that the joint is sufficiently strong for use.

For testing purposes the welded seam is placed between the poles of a large horseshoe electro-magnet. The presence of flaws or cavities disturbs the regularity of the magnetic lines of force across the weld, and this is revealed by measurements of the intensity of the magnetic field at various points near the joint. A meter has been devised for the purpose, and tests are quickly made by merely passing this over the weld. Even deep-seated faults may be detected by this method, which may be used in examining large butt welds in structures such as generators and flywheel rims.

Broadcasting Speech Round the World

An interesting experiment recently carried out by the General Electric Company of New York was the transmission round the world of a talk given in Schenectady. The voice of the speaker was broadcast from station W2XAD,. and was successively relayed by short wave stations at Huizen in Holland, Bandoeng in Java, and Sydney. From Sydney it was returned to Schenectady. There it was received in the very room from which it was being sent out, the speaker's voice being accompanied by an echo that repeated every syllable an eighth of a second later. It is claimed that this was the first round-the-world broadcast, and the total distance covered by the transmissions was about 22,900 miles.

Rescuing the Swallows

Last autumn wintry conditions set in before the swallows of Central Europe had completed their preparations for the annual migration to warmer climates in the South. When a sudden snap of cold weather caused the insects on which they depend for food to disappear, the swallows hastily tried to cross the Styrian Alps, but the effort ended in disaster, for already snowstorms and blizzards were raging. Thousands of birds were unable to cross the mountains, and the belated travellers appeared to be doomed.

At this crisis the Viennese Society for the Protection of Birds came to the rescue. As many swallows as possible were capturedan easy task, for they were cold and exhaustedand after being fed and kept in warm rooms for a short time in order to enable them to recover their strength, they were loaded into cases for transport by aeroplane to Venice. There they were again fed and released to continue their flight southward. Other birds afterwards were transported by means of special trains, and altogether more than 40,000 swallows were helped on their way to their winter homes.

New Uses for Rare Metal

A metal that is growing in industrial importance is beryllium. It is lighter than magnesium or aluminium and is sufficiently hard to scratch glass. A few years ago the metal was so rare that its price was about $£ 40$ per 1 lb . Recent discoveries of extensive deposits of beryllium ore in Idaho, U.S.A., and the Styrian Alps, Austria, and the introduction of new methods of extraction, have reduced the price of the metal considerably.

Practical uses may now be found for beryllium. It is already employed in making X-ray apparatus and in the manufacture of the electrodes of the neon tubes whose pink glow is such a prominent feature of modern illuminated advertising signs. A very hard glass and a special porcelain for use in sparking plugs also are made from its oxide, and as the metal becomes more common it probably will find increasing employment in the production of light-weight alloys for use in aircraft construction.

Floodlight Projector for Use Under Water

A submersible floodlight projector that has been introduced by the General Electric Company of New York is intended for use in swimming baths or pools and to illuminate fountain sprays at night. It does not form an obstruction under the water, for it is only $10 \frac{5}{8} \mathrm{in}$. in diameter and 9 in . in depth.

The casing of the projector is of cast aluminium, which is not corroded when submerged, and a flexible ball and socket pipe fitting is attached to it in order that it may be adjusted to any required position. It gives a fan-shaped beam of light, and this is directed in such a manner that it does not leave the water, the rays of light that reach the surface meeting it at such an angle that they are reflected downward again. In this manner glare for spectators and swimmers is avoided and ample light is given for under-water movements.

A 250 -watt lamp is employed when the projector is submerged, but when it is used to illuminate fountains, one of lower wattage may be used. For this purpose the unit may be installed directly beneath the sprinkler and splendid effects may be obtained by the use of coloured lenses.

T
HE pleasures of an open-air life cannot be appreciated to their full extent until a holiday has been spent under canvas. Camping has a thrill of its own, and those who have slept with only a roof of canvas between themselves and the stars know the delights of waking at dawn to find the sun streaming in through the tent flap, and the songs of the birds encouraging one to get up and enjoy life.

There appears to be a widespread impression that a camping holiday is one beset with discomforts and difficulties that can be overcome only by the hardiest, but this is by no means correct. On the contrary, such a holiday, if well planned, is peaceful enjoyment. Of course the camper must be prepared to see the humorous side when things do not go quite as they should. Even if a friendly but too inquisitive cow upsets the day's milk supply and treads on the eggs, it is foolish to lose one's temper !

Careful planning beforehand is absolutely necessary if a camping holiday is to be a success. If suitable arrangements are made beforehand, the holiday will be enjoyable even if the weather is not too good; but without preliminary planning, troubles of all kinds are likely to occur that will cause irritation and annoyance, and go far towards spoiling the outing. A camping holiday costs very little, and apart from the initial outlay for the equipment the expenditure is only a few shillings per head per day, the exact amount depending mainly on the tastes of the individual. If they have simple tastes-and after all campers must be prepared to forgo some of the luxuries of home life-a party of two or three boys can camp in comfort for about $3 /-$ each per day. For a larger party the cost may be even less.

The chief preliminary expense is concerned with the equipment, but if this is looked after properly it will last for years. Tents may now be obtained for less than $20 /-$, but those who are taking up camping for the first time are strongly advised not to economise on the tent more than is absolutely necessary, and in particular to pay the extra price for a tent of rot-proof material. A tent of poor quality is not only very unsatisfactory if the weather happens to turn wet, but

Scouts show how simple a camping outfit can be.
also it will deteriorate rapidly and soon have to be replaced. If three or four boys decide to camp together, they can obtain first-class equipment by clubbing their funds. Each boy then enjoys the full use of the whole, but has to pay a comparatively small amount.

Another important item of equipment is the ground sheet, and here again a cheap article is false economy. A thin sheet of poor quality is very easily torn, and is in every way thoroughly unsatisfactory.

Other equipment includes the necessary cooking utensils, the number and size of which depend upon the size of the party. Several types of canteen are available, consisting of different sized pans that fit one inside the other for convenience in carrying. Each camper should have an enamel plate and cup, and knife, fork and spoon. Crockery and glass should be avoid-
ed, as they are easily broken. It is possible to obtain special knives and forks that fit together, the handle of the fork covering the knife blade and the fork being protected by the knife handle. These are quite cheap and very convenient. Suitable containers for foodstuffs are required, and tins are best for the purpose. If such items as tea and sugar are not properly stored they have an unpleasant habit of becoming mixed with other items such as the butter, with very undesir-able-results. Special containers for butter are available, consisting of an outer case of aluminium with a glass lining, and these are very useful in the hot days of summer when the butter is liable to become oily. A great saving of weight will be effected if aluminium is used for all the utensils, but this means a considerable increase in cost. An item that is of great importance and is easily forgotten is a tin opener.

A Primus stove is an item that should be purchased if possible. It is specially useful for campers who do not wish to have the trouble of lighting fires, and it is a decided boon on a wet day. A small collapsible stove that fits into a tin of handy size is ideal for the purpose, and will be found to meet all the requirements of a party of three or four. A supply of paraffin and methylated spirits should be carried, for although farmers generally have these commodities and are willing to oblige if a courteous
request is made, this should not be relied on entirely. When making preparations it is a good plan to prepare a list of all the articles that are likely to be required, and then to go through this list carefully, crossing out every item that can possibly be dispensed with. Before starting on the holiday the equipment should be checked off with this final list to make sure that nothing has been forgotten. The absence of even a small item is apt to be irritating when one is miles from the nearest shop. The amount of personal gear depends of course upon the length of the holiday, but in any case it should include a change of socks and, if possible, a pair of light shoes or "pumps," toothbrush and paste, sponge, soap, towel, hairbrush and comb and mirror, needle and cotton, string, pocket knife, and electric torch. A small first-aid outfit should always be included, for even the most trivial cuts, scratches or insect bites may give rise to trouble if they are neglected.

Each camper needs two blankets or, as an alternative, a sleeping bag. The bag need only be a home-made article, and may consist simply of two blankets stitched together to form a bag of double thickness, left open at the top and a little way down the side. Tapes attached to the opening make it possible to fasten up the top after one is inside. The bag will be found warmer than loose blankets, and for extra warmth and protection against damp it may be covered with waterproof material which, however, should be easily detachable so that the blankets may be aired each morning.

The actual site for the holiday camp should be determined carefully beforehand, and a very useful book for this purpose is " Camping Holidays," obtainable from the Great Western Railway. This book is divided into counties, and camping facilities in numerous towns and villages are given with useful information such as the contour of the ground, the distance from the nearest railway station, the nearest water supply, etc. Special railway facilities are available for parties of campers, and details may be obtained at any railway station.

Those who intend to tour, choosing their own camping site at the end of the day's journey, should begin to look out for a likely place at least an hour before sunset in order to allow ample time to pitch the tent and

Fun during washing up operations.
prepare a meal. The position chosen should be sheltered as far as possible from the prevailing wind, and a site on the lee side of a hill or wood is ideal. The question of water supply should not be overlooked. There is no difficulty in this matter if a clear stream is within convenient distance, but in the absence of this, water must be obtained from a local farm. It should not be overlooked that campers are not justified in dumping themselves down in any place that takes their fancy without obtaining permission from the owner or occupier of the land. In most cases a visit to the nearest farm will secure the necessary permission without difficulty. If it is intended to light a fire permission to do this should always be asked, and as a rule it will readily be granted unless the position chosen for the camp is considered dangerous. If the tent is of the type that is narrower at one end than the other, the narrow end should face the wind; otherwise the opening of the tent may face south or south-east. The ground should be cleared of sticks and twigs before the ground sheets are laid down, and for obvious reasons it should be made a rule to remove boots before entering.

The next step is to prepare the meal, and after a day's outing this will be considered the most important one ! Potatoes, eggs and milk can generally be had from the farm, and butter and bread may often be obtained, but it is not advisable to rely on obtaining all that is needed. If the camp is to remain in the same place for a few days, the question of food supplies must be settled at the beginning, and the farmer will be able to suggest the best source of supplies. A quick meal can be prepared from fried chops, or steak and potatoes. For variation, a stew can be made by cutting up the meat and placing it in the billycan with a little water, chopped onions and carrots and seasoning, potatoes being added later if a thick stew is favoured. Tinned food is handy, and generally has to be used to some extent, although of course fresh foodstuffs are to be preferred. Prepared foods, such as "Force," etc., are convenient and appetising for breakfast or supper. Intending campers are recommended to spend a little of their spare time in the kitchen at home beforehand, as even a small amount of knowledge obtained in this way will be found most useful.
(Continued on page 462)

British Attempt on World Record Flight

The Hon. Mrs. Victor Bruce this summer is to endeavour to break the world's record for a refuelled flight. She will be accompanied by Mr. Bruce, and it is hoped that during the flight the machine will appear over various towns and airports, where it will form an added attraction at air displays. It is interesting to note that when necessary, Mrs. Bruce will be given her position by the direction-finding stations at Croydon and Lympne in the manner described in the article on page 434 of this issue.

The attempt has been very carefully organised in order to avoid as far as possible the risks of a flight of this kind. For instance, a sixwheeled lorry, equipped with wireless apparatus, will carry meteorological and navigation experts about the country, and from it weather reports will be despatched to the pilots of the machine by wireless to enable them to choose the best course to follow in order to avoid stormy conditions. During the flight the machine will be accompanied by a Comper "Swift." This will act as a convoy and also will test weather conditions.
The interior of the machine in which the flight is to be carried out has been specially fitted to give every possible comfort, and it will be possible for the pilots to go to bed, to cook all their meals and even to have a bath!

Wind Indicator for Night Flying

Every aerodrome is fitted with at least one " wind stocking," or openended canvas sleeve mounted on the upper end of a mast in order to indicate to pilots the direction in which the wind is blowing. For night flying the wind stocking is practically useless and an interesting substitute has been produced by Chance Brothers Ltd., of Birmingham. The new indicator consists of two beams placed in the form of a "T" and mounted on a small girder, On top of the beams are a number of neon tubes that when lit up at night may readily be seen by approaching pilots. The "T" beams are mounted in such a manner that they may easily be swung round by the wind and the mechanism is so sensitive that it is affected by wind speeds as low as four m.p.h. The indicator does not oscillate violently when caught by sudden cross gusts of wind, however, a special braking device being fitted. A small indicator of this type also has been developed.

American Aeroplane Demonstrations

It is reported that aircraft constructors in the United States have become greatly alarmed at the increasing amount of export trade that is being done by British

The wireless cabin in a Short " Kent " flying boat, showing the powerful Marconi wireless transmitling and receiving apparatus that can be operated when the flying boat is in the air or on the water. Photograph by courtesy of Marconi's Wireless Telegraph Co. Ltd.
aircraft constructors, and therefore they intend this summer to send to this country a fleet of the fastest American aircraft constructed in order to draw the attention of possible foreign purchasers to their products. These machines will be flown by American pilots, who will endeavour to break all British records and all the European records that are held by British machines. It is interesting to recall that last year Captain Frank Hawks, the famous American pilot, visited this country and set up many records in an American low-wing monoplane.

Record Flight to Capetown

Mr. J. A. Mollison, who in July last year made a record flight from Australia to England, has now set up a new record for the journey between England and Capetown. Mr. Mollison made this flight in a D.H. "Puss Moth" in 4 days $17 \frac{1}{2}$ hours. The record was only set up by dint of almost continual flying and when Mr. Mollison reached Capetown he was so tired that the lights on the aerodrome dazzled him. He therefore landed on the beach, running his aeroplane into the water. Mr. Mollison's flight was made in 15 hours less time than the previous record, which was set up by Mr. Gordon Store and Miss Peggy Salaman.
A world's record for distance over a closed circuit has been made by the celebrated French airmen MM. Bossoutrot and Rossi, who flew a Blériot-Zaffata 110 monoplane named "Joseph Le Brix," fitted with a 500 h.p. Hispano Suiza engine, for 76 hours 35 minutes. During this time the airmen covered a distance of about 6,575 miles, exceeding by about 145 miles the distance flown by MM. Doret and Le Brix, the previous holders.

Conducted Air Tours Abroad

This summer it will be possible for the first time for holidaymakers to make conducted tours by air. The tours are being organised by Imperial Airways Ltd., and the first flights arranged are to Egypt. During these tours, which will occupy three weeks, passengers will alight at Paris, Brindisi, Athens, Galilee and Cairo ; and at many of the places visited, long stops are to be made in order to enable land excursions by motor car to be undertaken. The fare, including hotel expenses and the cost of meals and railway connections, is about $£ 80$ per person. This does not include the cost of any land excursions that may be undertaken.

Bristol " Jupiters " in Russian Aeroplanes

An interesting civilian aeroplane has been produced by a Russian aeronautical factory. The machine is known as the A.N.T. 14 and is a five-engined all-metal cantilever monoplane. The engines employed are Bristol " Jupiters."
The new aeroplane has accommodation for 34 passengers and should be capable of attaining a maximum speed of $133 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and of cruising at $110 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Interference with Aircraft Wreckage

The Air Ministry desire to call the attention of the general public to the great difficulties that have sometimes been caused by private persons thoughtlessly removing parts of damaged aircraft.

It is of the greatest importance that the causes of accidents to aircraft should be ascertained. Whenever a serious accident is reported, the Air Ministry Inspector of Accidents proceeds with the least possible delay to the scene of the accident to examine the crashed machine, and it is essential for his purposes that the wreckage should not have been disturbed more than is necessary to set the occupants free and to prevent any immediate risk of damage to persons or property. During theinterval, therefore, before the arrival of the inspector, members of the public are earnestly requested to abstain from any interference with a wrecked aircraft, except for these emergency purposes. The police already have instructions on the whole matter, and interference with wreckage is definitely prohibited by law.

A further point of great importance is that broken pieces of the aircraft (for example, a part of a propeller) may be found some distance away. It will be of the utmost assistance if the finding of such pieces is immediately reported to the police, or to the Inspector of Accidents.

Although breaches of the law have occurred, the Air Ministry feel sure that no one would wish to retain a broken part of an aircraft in these circumstances for whatever purpose, even though it is an apparently insignificant item, once it has been pointed out that it may be essential to the authorities for tracing the cause of the accident. In a recent case a broadcast appeal for missing parts was made and three members of the public went to much trouble in reporting the finding of certain bits of metal. This enabled the Air Ministry to establish the cause of the accident in question beyond doubt.

England-Australia Record Again Broken

Mr. C. W. A. Scott has succeeded in setting up a new record for the flight from England to Australia, having completed the journey in 8 days, 18 hours, 22 min . in a D.H. " Gipsy Moth." The previous record, made by Mr. C. A. Butler in a Comper "Swift," exceeded Mr. Scott's time by 7 hours, 36 min .
plane in the world, but also possesses the great distinction of having made flights in which no fewer

New Imperial Airways Port of Call

Imperial Airways flying boats operating on the service between England and India now call at the port of Limasol, on the Island of Cyprus. The opening up of Cyprus to air travellers will enable travellers from this country to reach the beautiful island three days after leaving London. The new port of call should be popular also with many of those Europeans who

The " White Bird," the $450 \mathrm{~h} . \mathrm{p}$. Lorraine-engined Levasseur biplane in which the French aviators Nungesser and Coli made an unsuccessful attempt to fly the Atlantic in May, 1927. The "White Bird" was last seef passing over Ireland, but no trace of the machine or its occupants has ever been found

World's Largest Bomber

The lower illustration on this page shows the CaproniCa.90P.B., an Italian machine that is not only the largest bombing aero-

The Caproni Ca.90P.B., the world's largest bomber. The employment of a short upper piane gives this machine an unusual appearance characteristic of certain of the products manufactured by the Societa Italiana Caproni.
are stationed in the desert countries of Iraq and Palestine, for they will be able to spend long week-ends in Cyprus. Passengers who leave Basra or Baghdad on Friday will reach the island before mid-day on Saturday and will be able to catch the return air service on Tuesday, alighting again at either Baghdad or Basra on Wednesday afternoon.

Catapults for Atlantic Air Service

It is proposed by Deutsche Luft Hansa to put into operation an air service between
than six world records were created.
The machine is a six-engined sesquiplane and is of unusual appearance, the shorter of the two planes being the upper one, and not the lower as in most sesquiplanes. The engines of the machine are mounted simiIarly to those of the British Short " Singapore " Mark 11, being carried in tandem in streamlined nacelles. They are of the Isotta-Fraschini " Asso " water-cooled type and have 16 cylinders, the total power developed being $6,000 \mathrm{~h} . \mathrm{p}$.

The great aeroplane is well provided with cockpits, for in addition to that for the two pilots, there are three others, situated in the nose, immediately behind the wings, and in the top centre section of the upper wing respectively. The cockpit behind the wings also is the main gunners' cabin and is provided with machine gun positions above, below and in the sides. The machine's supply of bombs are carried in a. special compartment below the wings, and this has accommodation Germany and South America. The service will necessitate flying across the South Atlantic Ocean, and it is intended to install catapults on each side of the Atlantic route in order to shoot the machines into the air. The catapults will be of a type that may be used with both seaplanes and flying boats and their use will enable heavily-loaded aircraft to avoid the buffeting in the heavy swells and rough seas experienced off the South Atlantic coast.

If the service is put into regular operation the catapults will be erected near Bathurst, Gambia, on the African side, and near Pernambuco, Brazil, in America.
for about $17,600 \mathrm{lb}$. of bombs.
The span of the short upper plane is $114 \mathrm{ft} .5 \frac{1}{2} \mathrm{in}$. and that of the lower one 152 ft . 9 in . The machine is 88 ft . 4 in . in length and measures 35 ft .5 in . in height. It has an empty weight of about $33,000 \mathrm{lb}$., the loaded weight being exactly twice this amount and in spite of its immense size and the huge loads that it is capable of carrying, the machine has a maximum speed of more than $127 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and a stalling speed of only $56 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It has a ceiling of $14,760 \mathrm{ft}$. and its fuel tanks carry sufficient petrol to enable it to cruise for seven hours.

Photography from Aeroplanes United States Army Air Corps Activities

ONE of the most interesting branches of work performed by the United States Army Air Corps, not only with regard to its military value, but also its employment in connection with civilian agencies, is that involving the use of aerial photography. In the military field it obtained its first great impetus during the World War. During the early stages of that conflict aerial observation was carried out entirely by observers, who reported what they saw below. As time went on, however, it was found that the photographic eye of the camera was better adapted for many purposes than its human counterpart. The photograph was accurate, it covered a wide field, it could be kept for an indefinite period of time, and the comparison of a series taken at intervals indicated interesting developments that could be observed better in this manner than in any other.

A erial photographs fall into two principal categories, known as 'obliques"' and "verticals." Oblique photographs, the kind with which the public is most familiar, are taken by pointing the camera over the side of the aeroplane, and they show the view as it

An impressive view of the water front and the towering skyscrapers of New York as seen from an aeroplane.
single exposure is determined by the height of the aeroplane above the ground, and by the focal length of the lens used. It is often desirable to cover a larger surface. In this case the usual procedure is to take a succession of overlapping exposures at regular intervals, the prints from which are mounted in their proper position in relation to each other, thus forming what is known as a strip map or mosaic, which may cover a wide area of ground. When assembled with accurate controls mosaics may be utilised to form very accurate maps.

Another method of operation is the taking of composite vertical photographs. This consists of the assemblage of two or more aerial photographs made at one exposure by a multiple-lens camera, and printed and mounted in $\mathrm{s} \quad \mathrm{u} \quad \mathrm{c} \quad \mathrm{h}$ a manner that the assembled photographs form the equivalent - of one taken with a wide-angled lens. The camera used has one lens pointing vertically downward, and two or more lenses pointing in an oblique direction. The resulting oblique photographs are projected into the plane of the vertical photograph by means of a special transforming printer. The advantage of this camera is that, with three lenses tangent to a wide arc, it covers a very wide territory. For instance, at an altitude of $15,000 \mathrm{ft}$., the field of view is 9.4 miles across. Cameras of the type used in making composite vertical photographs ordinarily have three or four lenses, although in one that has been experimented with the number has increased to five.

Single photographs show objects in one plane ; stereograms are overlapping pairs of either vertical or oblique aerial photographs. Their value lies in the fact that they will show up the relief in a photograph, and enable us to see it just as we should see the object itself. Stereoscopic photography employs the principle underlying binocular vision. The human eyes are about $2 \frac{3}{4} \mathrm{in}$. apart, and this double vision gives us a sense of relief or depth in all objects we view up to a certain distance. Beyond this distance, the two eyes receive visions that merge, and we receive an impression more like a single photograph than a stereoscopic view.

The ordinary stereogram is produced by photographing an object with a camera having two lenses approximately 3 in . apart. This gives a double or overlapped picture of the object, which, when viewed in a stereoscope, is reproduced to the eye as a single photograph that gives the sensation of relief. In aerial photography the same principle is employed, but it is exaggerated. In taking
pictures in the air, owing to the distance from the lens to the object photographed a double-lens camera with lenses several inches apart would not produce this stereoscopic effect. For that reason in aerial photography the effect is obtained by taking two photographs at some distance apart from the same altitude. Overlapping photographs show exactly the same area, but slightly different views of it. When these two pictures are viewed through a stereoscope on their proper sides in the order in which they were taken, the stereoscopic effect is obtained. In this manner relief of buildings, depth of valleys, and all such features are immediately brought out and understood; and it will be obvious that stereograms are a great aid in the interpretation of aerial photographs, as they enable the relief of the ground to be realised.

The cameras used are the result of much ingenious development. The one generally used in taking "verticals" contains a long roll of film,

Students at work laying aerial photographic mosaics in the Department of Photography of the United States Air Corps Technical School, Illinois. For permission to reproduce this photograph and the one below we are indebted to the U.S. Army Air Corps.

In the case of a sham fight between two or more aircraft, the timeregistering device shows the exact moment at which the first vital shot was fired, thus enabling the winner of the combat to be determined.
One of the foremost in the development of high altitude and distance photography is Captain Albert W. Stevens of the United States Air Corps, who, with Captain St. Clair Streett, bears the distinction of having reached the highest altitude ever attained in an aeroplane carrying two occu-pants- $37,854 \mathrm{ft}$. Photographs taken at this height cover a tremendous area, as much as 33 square miles, nd are remarkably clear as regards detail, permitting of enlargements being made up to 10 diameters. At such high altitudes, owing to the thinness of the atmosphere, human life can be sustained only by the use of oxygen, which is carried in the machine. Very low temperatures also are encountered, running to as much as 60 degrees or 70 degrees below zero. At first sight, exploits of this kind may appear to have little value, but they are nevertheless of decided importance. At such altitudes, five miles or more, aeroplanes are inaudible, and except in certain cases when the moisture in the exhaust is frozen into a kind of cloud streamer, they are also invisible. Photographs thus could be taken over enemy territory without the presence of the aeroplane being suspected.
and exposures are made automatically at intervals previously determined, ranging from 10 to 90 seconds between each photograph. This interval will be determined by the air-speed of the machine ; the strength and direction of the wind, which determines the machine's ground speed; and the altitude at which the photograph is taken. There is also a device for notifying the pilot and the observer a few seconds before the time of exposure, thus allowing the pilot to level the machine and the observer to maintain the axis of the camera in a vertical position. The automatic device may be disconnected, and the exposures made when the observer desires.

The machines used for aerial photography are specially designed, and the United States Air Corps have purchased for the work a number of Fairchild single-engined cabin aeroplanes. Camera mountings are important fittings. It is necessary that they should eliminate vibration as much as possible, and in the case of vertical photographs enable the observer to keep the camera axis as nearly as possible in the vertical position. Sponge-rubber pads and shock absorber cord are generally used to dampen vibration. The pilot should have special training in the technique of flying a photographic machine, for it is only after considerable experience that the best results are obtained. Further, in order to achieve

U.S. Army Air Corps cadets receiving instruction in the mechanism and use of a camera for aerial photography.

Closely allied with high altitude photography is photography at long range. Photographs taken by the Air Corps in April 1930, from an altitude of $20,000 \mathrm{ft}$. over a point near Crater Lake, Oregon, show distinctly Mt. Rainier in Washington, an air-line distance of 270 miles. The mountain was not visible to the human eye because even on clear days the atmosphere contains sufficient haze to limit vision to less than 27 miles. These remarkable results are obtained by the use of special film sensitive to the invisible infra-red rays that penetrate smoke and haze, and by special filters placed over the lens.

Another branch of aerial photography in which the Air Corps has made remarkable progress is in the taking of photographs at night. Such photographs are made by firing a large charge of magnesium powder, with automatic success, the pilot and the photographer should have worked together in order to be thoroughly familiar with each other's methods.

While it is not directly used in aerial photography, an interesting development of the use of photography in aircraft is the gun camera and time-registering device. This is used for the training of men in the use of machine guns, and is mounted in connection with the gun. When the trigger is pulled, instead of bullets being fired, a series of photographs are taken that show the number of hits that would have been made if ball ammunition had been used.
means for tripping the camera shutter at the point of maximum intensity of the flashlight. If the camera shutter were to remain open for any considerable length of time awaiting the flash of the magnesium bomb, the resulting photograph might show a blur caused by lights on the ground, especially in the case of night photography of a well-lighted city. The magnesium flash bomb is released from the aeroplane, and it explodes after the expiration of a predetermined time.

Along with the development of night photography has come the working out by the Air Corps of a
(Continued on page 462)

Air Transport in all Weathers The Science of "Blind Flying"

Ithe past one of the greatest disadvantages of air transport has been that it depended so much on the weather, and even if only a moderate breeze sprang up it was often impossible for aircraft to be brought out from the hangar. Nowadays however aircraft, particularly large commercial machines, can be operated when extremely bad weather conditions are prevailing. For example, on more than one occasion Imperial Airways services between England and the Continent have been carried out regularly and punctually when it has been impossible for any of the boat services to be maintained, or even for vessels to put out from port.

Commercial air lines are of course staffed by men who have had the benefit of many years of experience of flying under all conditions, while the companies maintain excellent meteorological services and wireless direction finding apparatus by means of which pilots may be informed of their exact whereabouts in less than two minutes' time of asking. Private flying and air taxi work, on the other hand, are frequently held up by the presence of low cloud or fog, for under these conditions, unless a pilot has had special training, it is unsafe for him to venture on even a short crosscountry flight. The reason for this is that when a pilot who has no knowledge of what is known as " blind flying " becomes lost in the clouds, all his normal senses of direction and position appear to desert him. More than one pilot who has been flying through clouds has found to his surprise on reaching the clear air that he has been flying upsidedown for some time! An inexperienced pilot is also in great danger if his machine should go into a spinning nose dive while among the clouds, for immediately he neutralises his controls-the normal method of getting out of a spin-his sensations are that he is beginning to spin in the opposite direction. Even if he should be successful in flattening out, it is probable that he will overdo this, stall his machine, and commence another nose dive.

Every pilot who wishes to be able to carry out cross-country flights in any but the best of weather should endeavour to take a course of tuition in " blind flying." Training of this kind is carried out in special aeroplanes that are provided with duplicate sets of instruments, and in which the rear cockpit may be covered by a special hood through which it is impossible for the pilot to see. The hood allows a certain amount of light to creep in, however, as it is found that this reproduces more closely the normal effect of fog or clouds than if the pilot were to sit in complete darkness and have his instruments illuminated by electric lights.

A Hawker "Tomtit" being used for blind flying training. For permission to publish the photographs on this page, we are indebted to the courtesy of the Editor of "Flight."

is pointing upward or downward.

A pilot who has been accustomed only to flying under normal conditions always feels exceedingly " lost" and confused when he first makes a flight under a hood. In order to accustom him somewhat to the use of the instruments, and to the sensation experienced when flying "blind," a special apparatus has been produced in which the pilots may undergo all these sensations while still on the ground. The apparatus is similar to the well-known Reid and Sigrist aptitude indicator, but it is covered over and, by very ingenious methods, the controls are all given the
'feel" that they have when an aeroplane is flying. The instruments can be made to behave just as they would if the machine were to be put into various attitudes, even the compass needle moving in a very realistic manner. The actual manipulation of the indicators to bring about imaginary attitudes of the machine is under the control of a tutor, who sits just behind the pupil. The apparatus is not intended to shorten the length of time required to learn blind flying, but it is expected that it will enable students to take better advantage of the time they spend in the air.

One of the most modern turn and bank indicators is that constructed by Reid and Sigrist, and some idea of the work that has gone to the production of this may be gained from the fact that the instrument has been tested in 25 different machines over a period of two-and-a-half years. The latest model consists of a dial that is graduated to take two pointers, one being known as the turn indicator and the other as the side-slip indicator. The side-slip indicator consists merely of an air-damped pendulum that works inside a fan-shaped casing, arranged so that when the pendulum swings from side to side, the air in the casing must be displaced from one side of the casing
to the other. A small portion of the pendulum extends above the pivot point, and this is connected to the lower end of the indicator needle. Thus when one wing of a machine in which the instrument is fitted is lower than the other, the pendulum moves over to the lower side and in turn moves the indicator needle, warning the pilot to correct the machine.

The turn indicator is of the gyroscopic type. It consists of a gyro wheel on the circumference of which there are several small cups. Air is forced into these cups by the passage of the machine through the air, and this is sufficient to keep the wheel turning. The gyroscope is mounted in gimbals and is connected by a system of gearing to the indicator needle on the dial, so that when the machine turns the gyroscope is affected, and the movement is shown on the indicator. The pitch indicator, or inclinometer, usually consists of a vertical length of glass tubing inside which is some coloured liquid that rises and falls as the aeroplane climbsordives. A scale is provided at the side, and when the liquid is opposite the O mark the machine should normally fly level. In many cases, however, the aeroplane will tend

This photograph, published by courtesy of Armstrong Siddeley Motors Ltd., shows the cockpit of an Avro training machine adapted for blind flying. The instruments shown are : - 1 . Compass; 2. Kunning Switch 3. Venturi Tubes; 4. Altimeter; 5. Revolution Indicator; 6. Oil Temperature Indicator il. Turn and Bank Indicator ; 8. Pitch Indicator ; 9. Air Speed Indicator ; 10. Oil Pressure Gauge ; 11. Doping Pump 12. Starter Switch.

When a fully trained blind-flying pilot is given a course to fly blind, say a triangle, he calculates the distance between the three points, the compass directions in which they lie, and the time that it should take him to fly between them, making due allowance for the speed and direction of the wind. He takes off directly into the wind and then makes for the first turning point, endeavouring to keep all the pointers on his instruments at zero. If any pointer moves in either direction he directs the aeroplane back on to its course until the needle is at the correct place. The pilot makes his machine cruise at a standard speed, and after he has been flying for the predetermined period of time decides that he should be over the turning point and turns, carefully watching his instruments while doing so, and endeavouring to forget his normal reactions to the feel of the machine. If the calculations are carefully worked out and the instruments obeyed during the flight, it is astonishing how accurately the course decided upon may be followed. One student of Air Service Training Ltd., the foremost blindflying training school in England, summed this up after successfully completing a blind flight by to climb slightly when the liquid is at this level, and consequently the readings of the other instruments on the dashboard of the machine must be taken into consideration when the pitch indicator is read.

Before a pilot is taken up for his first blind flight, the action of the instruments and the method of working out courses are fully explained to him, and he spends a certain amount of time in the "tutor" in order to become familiar with the instruments. The method of training that has been adopted enables a pilot to build up his efficiency in stages. He starts by learning how to use the rudder alone, then the elevator alone, and then the ailerons alone, the instructor looking after the other controls in each case. Gradually any two of these are combined, and finally all three controls are taken over. In normal cases co-ordination should be achieved after about eight hours. Skill in blind flying can only be attained by experience and the development of concentrative powers not usually called upon in flying. No pilot's technique is complete without a reasonable degree of skill in this direction and the pilot who claims to be able to fly blind should be capable, when entirely blind-

Mr. H. J. Horsey, a pilot of Imperial Airways, speaking into a Marconi microphone fitted in the cockpit of the Handley Page machine, "Hadrian." Our photograph is published by permission of Marconi's Wireless Telegraph Co. Ltd. exclaiming how easy it was to " hit the mark by doing the sums! It is not usual for Imperial Airways air liners to be navigated entirely by "dead reckoning," for on the Company's routes between Croydon and Le Bourget the machines are able to obtain their bearings when necessary by means of wireless directionfinding apparatus installed at Pulham, Lympne, and Croydon.

When an aeroplane sends out a call for bearings, its direction from each of these three stations is ascertained by means of an instrument known as a radio-goniometer, The bearings from Pulham and Lympne are immediately transmitted to Croydon where they are plotted on a map, and in about two minutes the pilot is informed by wireless of his exact whereabouts. By the aid of this apparatus flights have been made between London and the Continent during which the pilots have scarcely been able to see the ground throughout the whole of the journey.

Reliable as the normal Bellini-Tosi apparatus has proved under these conditions, however, wireless direction-finding has been subject to errors during the hours of darkness, and particularly at sunset and sunrise, on account of the natural phenomenon of the irregular polarisation of wireless waves at these times. Realising the importance of providing a direction-finder capable of giving accurate bearings at all times of the day and night, particularly in view of the probable extension of night flying services in the near future, the Marconi Wireless Telegraph Co. Ltd., have developed a direction-finder in which this "night effect" is overcome.

The new apparatus is known as the (Continued on page 462)

Lentz Valve Gear on L.M.S.R. "Moguls "

The illustration on this page shows one of five standard L.M.S.R. 2-6-0 locomotives that have been fitted with rotary cam valve gear of the Lentz pattern. This valve gear is used to operate poppet valves placed horizontally above the cylinders, and its object is to reduce maintenance costs, giving at the same time an improved distribution of steam. Their performances are being compared with those of similar locomotives having the $u s u$ a Walschaerts valve gear and piston valves. The construction of this class was commenced at Horwich in 1926, and the engine illustrated is No. 13124, built in 1929 and allocated to the Midland Division. The piston valves of the standard engines are 11 in . in diameter and have a
maximum travel of $6 \frac{1}{2} \mathrm{in}$. They are maximum travel of $6 \frac{1}{2}$ in. They are operated by Walschaerts valve gear. Cylinders having a bore of 21 in , and a stroke of 26 in . are fitted, and the driving wheels are 5 ft .6 in . in diameter. The boiler supplies steam at 180 lb . per sq. in. and the tractive effort at 85 per cent. of the boiler pressure is $25,580 \mathrm{lb}$.

The results of these experiments with Lentz valves and gear will be watched with interest in view of the trials also being made on the L.M.S.R. with Caprotti poppet valves. These valves have been fitted to 10 of the 20 rebuilt "Claughtons," the other 10 retaining the usual piston valves and Walschaerts motion.

G.W.R. Locomotive News

The famous express locomotive No. 6000 " King George V " is now back in traffic after a visit to Swindon works, where the boiler, wheels, pistons, valves and other important parts were dismantled to enable a complete overhaul to be made.

Another frur-cylinder engine of the "Star "clas No. 4034 " Queen Adelaide" -has been fivect with new outside steam pipes similar to those on engine No. 4002. Four of the engines of this class have now been equipped with these special pipes to the outside cylinders.

Several more 4-4-0 engines of the "County" class have been broken up.

L.M.S.R. 2-6-0 locomotive No. 13124. This is one of the five engines of this class that have recently been fitted with Lentz poppet gear. For this photograph we are indebted to the courtesy of the L.M.S.R.

July next. The track from thence to Northfields will be completed shortly afterwards and there will then be a fourroad track from Barons Court to Northfields. Two of the roads will be used by District Railway trains and the other two by Piccadilly "tube" trains. Between Ravenscourt Park and Turnham Green some disused Southern Railway track has been requisitioned by agreement with that Company. It is intended to run through trains from the Piccadilly line via Northfields over the District Railway to Hounslow, and also via Acton Town and the District Railway to South Harrow.

Much of the work on the extension has been of a difficult and complicated nature but surprisingly little delay has been caused to the train services already operating. The total cost of the scheme will be about $\npreceq 3,300,000$.

The stations on the lines affected by the extensions and alterations are being brought up-to-date, and even on the old District line to South Harrow some of the stations have already been rebuilt in readiness to cope with the increased traffic that is expected. The stations at Ealing Common and Sudbury Town, which were visited by the "M.M." representative, are particularly striking. Differing considerably in design, both equally combine a pleasing "modern" appearance with efficiency in operation.

New Express Locomotives on L.N.E.R.
Darlington works have been engaged for several months past on a new series of 15 three-cylinder 4-4-0 express locomotives, and the first has now been completed and put into service. It is numbered 201 and named "The Bramham Moor." All the engines of this series are to be named after famous hunts and they will have brass name-plates, of a new design, surmounted by the figure of a running fox. All will be fitted with Lentz rotary cam valve gear. The new "Hunts" are, of course, a continuation of the "Shires."

At Doncaster the order for 28 threecylinder 2-6-2 tank engines of the new class VI has been com pleted, the last of the series being numbered 2927. A new batch of the standard three-cylinder $2-8-0$ heavy freight locomotives has been put in hand.

A "Royal Scot" for American Exhibition

Further standard 0-8-0 freight locomotives have been completed at Crewe and are numbered 9653 to 9658 . Derby works have continued to turn out 4-4-0 locomotives of Class 2, and Nos. 676 to 683 are now in service.

The reconstructed "Claughton" No. 5902, "Sir Frank Ree," has been in the shops for repairs. Further dynamometer car tests are to be made with this engine. Fifteen more engines of this type are under construction and it is understood that they are intended to work chiefly on the accelerated services on the Midland section.
A "Royal Scot" locomotive and some passenger coaches of the newest types are to be exhibited by the L.M.S.R. at the World's Fair to be held next year at Chicago, U.S.A.

Colour Light Signals on S.R. Main Line

Colour light signalling is being installed on the S.R. line to Brighton, now being electrified. As yet the existing semaphore arm signals are being used for the regular services, but the new signals are being tried out by a special train, and eventually will supersede the present system.

London to Edinburgh in $7 \frac{1}{2}$ Hours

The travelling public in general, and railway enthusiasts in particular, will welcome heartily the remarkable accelerations in British train services that came into force on Monday, 2nd May, and the further improvements that are promised when the summer services are introduced in July. The successful speed trials that have been chronicled in recent issues of the "M.M." have, indeed, now resulted in very substantial improvements in the regular services.
It is especially gratifying to record that at last the agreement that fixed the minimum time between London and Edinburgh or Glasgow at $8 \frac{1}{4}$ hours has been set aside, and on both the L.M.S.R. and the L.N.E.R., the principal day services in both directions, between London and the chief Scottish centres, have been speed-ed-up considerably. Thus on the L.N.E.R., the "Flying Scotsman" now reaches Edinburgh in 7 hrs. 50 min., while on the L.M.S.R. the " Royal Scot" takes 8 hrs. to Edinburgh and 7 hrs. 55 min . to Glasgow. When the non-stop trains are put on again in July, these times will be further cut and the "Flying Scotsman" will cover the 393 miles between King's Cross and Edinburgh in $7 \frac{1}{2} \mathrm{hrs}$. On the L.M.S.R. the "Royal Scot" will perform the journey of 401.4 miles from Euston to Glasgow in 7 hrs. 40 min . In both cases the average speed will be 52.4 m.p.h.

The mid-day services between London and Scotland have been similarly accelerated. The new schedules give quicker timings between many English provincial towns and cities and both London and Scotland, whilst north of the Border, 'Stirling, Perth, Dundee, Aberdeen, and numerous other places share with Edinburgh and Glasgow the benefits of the improved services.

The new schedule of the "Queen of Scots" all-Pullman express is worthy of special mention, as the already sharp timing between King's Cross and Leeds has been cut in both directions, the down train now being allowed 196 min ., and the up train 195 min. , for the non-stop run of 185.7 miles, requiring an average speed of $57 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The overall time between London and Edinburgh is now 8 hrs., a reduction of 20 min .
On the Midland section of the L.M.S.R., a notable acceleration has been made in the timing of the $9 \mathrm{a} . \mathrm{m}$. from St. Pancras, which has been speeded up to arrive at, Edinburgh ahead of the "Flying Scotsman." For the run of 123.5 miles from London to Nottingham, only 129 min . are allowed and an average speed of $57.4 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. is demanded. Between Leeds and Carlisle, including a stop at Skipton, only 127 min . are allowed for the $112 \frac{1}{2}$ miles, many of which are steeply graded. Altogether between London and Carlisle, 20 min . are gained.

The most remarkable accelerations of all have been made on the G.N., section of the L.N.E.R.-a section that has always been distinguished for speed. The 8.30 a.m. from Grantham to King's

Cross is now allowed 118 min . for the 105.4 miles, including four stops ! For the last stage of 58.9 miles from Huntingdon to King's Cross, the allowance is only 57 min ., involving an average speed of 61.6 m.p.h. But even this smart schedule is eclipsed by that of the up breakfastcar train leaving Leeds at $7.50 \mathrm{a} . \mathrm{m}$., which now takes only $3 \frac{1}{2} \mathrm{hrs}$. to reach London, with four stops en route, and dashes off the final break of 105.4 miles from Grantham in precisely 100 min ., yielding an

A striking view of the footplate of a G.W.R. locomotive of the "Castle " class. The extended cab roof, side windows and seats illustrated are customary on most modern locomotives, and add considerably to the comfort of the crew.

S.R. Building Programme

The Southern Railway intends to keep up-to-date and the directors have authorised another programme of new construction. It provides for the building of 10 more 4-4-0 engines of the " Schools" class, and for the construction of 260 passenger coaches, most of which will be nine feet in width over the body. Ten restaurant cars with kitchens are also to be built. The new programme further includes no less than 1,000 goods wagons and vans of various types, many of which will be fitted with vacuum automatic brakes for use on express services. The whole of these vehicles will be constructed at the Company's own works at Eastleigh, Ashford and Lancing.
The Day's Work of a Veteran Locomotive
The two Stroudley 0-4-2 locomotives of the "Gladstone" class-Nos. 172 and 197-still remain at work on the Southern Railway. For some time past the duties of No. 172 have been of only a casual nature, but No. 197 is still putting in full time service although, naturally, not on main line trains. It is stationed at Brighton and regularly takes out the $9.13 \mathrm{a} . \mathrm{m}$. train from that town, working through to Ashford via Lewes and Hastings. It returns on the 1.25 p.m. from Ashford and reaches Brighton at 3.38 p.m. With a new crew in control, it leaves Brighton again at 5.38 p.m. and goes via Crowborough and Tunbridge Wells to Tonbridge, where it is due at 7.41 p.m. It leaves again for Lewes at 9.12 p.m. Before returning home to Brighton, on Wednesday it makes two trips from Lewes to Uckfield and back, and on Saturday, one such trip. It then ends the day by running home light from Lewes to Brighton. Its usual daily mileage amounts to about 210 miles. Railway enthusiasts who desire to travel behind this historic locomotive should hasten to do so, as the time cannot be far distant when it will be withdrawn from service. No. 172 will probably cease work earlier.
L.M.S.R. Carriage Washing

Machine

average speed of $63.2 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , start to stop ! In addition to the principal accelerations noted above, a great number of other improvements have been introduced by the various railway companies. Between King's Cross and Cambridge, for instance, five additional express trains have been put on in each direction. A new standard of comfort has been set in these trains; arm-rests are fitted in the third-class coaches and each train has a buffet car.

The G.W.R. announce that, with the introduction of the summer timetables, accelerations totalling $6,466 \mathrm{~min}$. daily will be effected, principally in branch line and local services. Main line services on this system have already reached a notably high level in regard to speed, and in their case further accelerations are less necessary.

A new carriage washing machine that deals with an average of 172 vehicles a day and 1,030 vehicles a week has recently been installed by the L.M.S.R. at their depot at Cricklewood, London. The machine consists of two units, each driven by a $20 \mathrm{~h} . \mathrm{p}$. motor, and the drive is transmitted by belt and bevel reduction gearing to the eight drums or wipers. These are arranged in pairs on opposite sides of the track.

The dirt is removed by means of cloth or felt flaps secured to canvas holders, these being clamped to collars riveted to a vertical shaft that rotates at a speed of 50 r.p.m. Water is fed to the flaps through a perforated pipe fixed horizontally above the drums, and vertical spraying pipes are arranged to rinse the sides of the cars after they pass each drum. A final rinsing of clean water is sprayed on to each vehicle.

Work of the Railway Clearing House Goods Traffic Handled By More Than One Group

THE more spectacular features of railway operation, such as long non-stop runs, high booked speeds, and the luxurious character of the main line express stock, are brought most prominently before the public; but actually the goods traffic produces a much greater revenue. In 1931 the total receipts from passenger traffic were $£ 55,500,000$; whereas the goods traffic in that year yielded $£ 88,000,000$. The humble mineral train standing in a refuge siding does more towards producing dividends than the magnificent express for the passage of which it has been shunted out of the way.

Goods trains on the whole attract comparatively little attention even from railway enthusiasts; and this is largely due to the fact that the vast majority of goods trains make their journeys at night. The greater part of this most important phase of railway work therefore takes place " behind the scenes While we are enjoying an evening by the fireside, or sleeping in the quiet early morning hours, goods yards up and down the country are centres of amazing industry. All through the night, long heavy trains carrying merchandise and minerals are puffing out from goods yards and away into the darkness, bound for all parts of the country.

From the moment, when a consignment of goods reaches a receiving depot until it arrives at its destination, there is a vast amount of clerical work to be performed. Consignment notes have to be checked, traffic classified, and invoices made out and charged and sent on to the receiving station, where advices are prepared for the consignee. Daily returns have to be made out showing the inward and outward traffic of the day, and copies forwarded to the company's audit offices and to the Railway Clearing House.

For the moment let us follow a consignment of goods brought into a goods depot for despatch. The carter brings with him a consignment note that is handed to the checker receiving the "traffic." In addition to making sure that the details given on the consignment note are accurate, the checker enters all particulars of the consignment-name of consignor and consignee, weights and nature of traffic, the number of the truck into which the traffic is loaded, etc.- on his own forms, copies of which are sent on to the receiving station, occasionally with the consignment itself, but usually by passenger train. Another copy is passed to the clerical staff for the preparation of invoices and completion of returns.

Up to this stage we have considered the traffic as having been consigned to a station on the receiving company's own system, and consequently not calling for the use of another company's system. It would be safe to say, however, that somewhere between 35 and 50 per cent., possibly more, of the railway traffic

The scene in a busy railway goods warehouse at the peak of the daily rush.
calls for a transfer from one system to another. Obviously the revenue obtained from the carriage of such traffic cannot all be retained by the company on whose system it originated; a part is due to the other company or companies over whose tracks it has passed.

It is here that the Railway Clearing House plays its part. Its function is to apportion the revenue from that consignment among the companies that handled it. This is naturally a complicated business, and no good purpose would be served by describing the process in detail. It will be sufficient to state that the basis of allocation is the mileage covered over the systems of the companies concerned. A certain fixed sum, according to the nature of the traffic, is allowed for terminal expenses; or in other words the use of stations, loading and unloading, and clerical work.
The idea of the Railway Clearing House occurred in 1842 to a Mr. Morrison, who at that time was an audit clerk on the London and Birmingham Railway. In those days through traffic was dealt with by re - invoicing each item at the point where transhipment from one company's system to another occurred. In order to keep accounts the companies used to exchange receipts from different through traffic; but owing to the different methods of keeping such accounts that were adopted by different companies, it was often difficult for them to agree as to figures. Mr. Morrison's idea was for the formation of a central office that should receive the returns of the through traffic from all companies and arrange the balances due. The scheme met with the support of the then chairman of the London and Birmingham Railway, and after much discussion it was finally brought into operation. The first office was a small building near Euston Station, and the railways dealt with numbered four, with a mileage of 418 .

The proceedings of the Railway Clearing House have been regulated by Acts of Parliament since 1850. Its authorised functions are "to settle and adjust the receipts arising from railway traffic within or partly within the United Kingdom, and passing over more than one railway within the United Kingdom, booked or invoiced at through rates or fares.

At the beginning the Clearing House clerks were few ; to-day its staff numbers thousands, and it has representatives at more than 500 junctions throughout Great Britain. These representatives are at work day and night recording the number, owner's name, and destination, of every wagon, van, coach, and tarpaulin passing from the system of one company to that of another. These reports are passed to the Clearing House, where they are classified in marvellous detail, and from them is calculated the proportion of the revenue to which each individual company is entitled in respect of traffic that has passed over two or more 'companies' systems.

An Engine with a Remarkable History The Leeds Northern "Aerolite"

By R. E. Bleasdale

A
STRIKING feature of British railway policy has always been the manner in which locomotives have been retained in service as long as possible, re-boilering and general modernisation having taken place, perhaps on several occasions, during the life-time of many of them. Several classes of locomotives might be mentioned in this connection, but it is even more interesting to trace the history of individual engines. The well-known "singledrivers" " Columbine" and "Cornwall" that were exhibited during the Liverpool and Manchester Railway centenary celebrations in September, 1930, are good examples, for the originals first appeared in 1845 and 1847 respectively, and are now preserved at Crewe. In addition to the notable veterans housed in the York Railway Museum, the L.N.E.R. have in service a locomotive that probably has passed through more changes of design than any other, and which is of outstanding interest in many respects. This little engine is the "singledriver" No. 66, "Aerolite," of the former North Eastern Railway.

The original "Acrolite " was built in 1851 at Leeds by Messrs. Kitson, Thompson and Hewitson of the Airedale Foundry. It was a welltank locomotive, and like many of its contemporaries was of the $2-2-2$ wheel arrangement. Duringthe "Battle of the Gauges " in the forties and fifties, when the broad gauge of $7 \mathrm{ft} .0 \frac{1}{4} \mathrm{in}$. as laid down by Brunel on the G.W.R. strove for supremacy with the $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$. gauge used by Stephenson and adopted by most other lines, the six-wheeled "singledriver" had been evolved and had proved highly successful on narrow or standard gauge lines. As a result, many prominent locomotive building firms concentrated on that type of motive power, notable examples being the " Jenny Lind" design of E. B. Wilson \& Co., and the well-known "Little Sharp" single-wheelers of Sharp, Roberts \& Co.

Many of the older 2-2-0 locomotives had large trailing wheels added to make them six-wheelers, and therefore more steady in running ; and although the G.W.R. had a number of $4-2-2$ single express locomotives, they had also many of the six-wheeled arrangement, so that the $2-2-2$ type was extremely popular.

The general design of "Acrolite" was similar to that of the " Jenny Lind" type that had been developed by Mr. John Gray in 1846 on the Hull and Selby Railway and afterwards on the Brighton Railway. This type, as produced in 1847 for the Midland by E. B. Wilson \& Co., to the design of David Joy, rapidly became popular. "Aerolite" had a light frame with inside bearings for the driving axle, and outside bearings for the leading and trailing wheels. The heating surface of the boiler was 587 sq. ft., and the grate area 9.8 sq. ft . ; the driving wheels were 6 ft . in diameter and the carrying wheels 3 ft .6 in . The tanks held 500 gallons of water, and sufficient coke was carried for a journey of 50 miles. "Aerolite" differed from the " Jenny Lind " type in that the cylinders, which had a bore of 11 in . by 18 in ., were outside, not inside the main frames. The engine was sent to the Great Exhibition of 1851 in Hyde Park where, resplendent in blue uniform, it vied for popularity with " Lord of the Isles,"' the G.W.R. masterpiece of David Gooch; Trevithick's "Cornwall"; "Folkestone" of the South Eastern Railway, an inside cylinder Crampton engine with an intermediate dummy crank axle; "Little England," another

The tank locomotive " Aerolite" in its second stage, as rebuilt in 1869. The general style of the engine The tank locomotive "Aerolite" in its second stage, as rebuint in 1869. The general style of the engine and the pattern of the boiler mountings are characteristic of North Easter
nameplate is visible below the dome.

2-2-2 well-tank built by George England \& Co. ;
and "Aviel's Girdle," the first example in Great Britain of a motor coach or combined engine and carriage.

In 1852 "Aerolite" was acquired by the Leeds Northern Railway, formerly the Leeds and Thirsk Railway. It was stationed at Thirsk until the North Eastern Railway was formed in 1854, with Mr. Edward Fletcher as locomotive superintendent, when it was numbered 369 and used to haul his saloon. In this dignified service it continued unchanged until 1868, in which year, while hauling a special train at Otterington, it became involved in a collision that put it out of action for the time being. In the following year it was rebuilt at Gateshead, and then underwent a change in which the design of the original builders was to a great extent superseded by Mr. Fletcher's characteristic practice. It was given a large boiler and dome, a more capacious coal bunker, a covered-in cab, and a smaller chimney of the "stove-pipe " pattern. The framing was doubled, and the cylinders, which were now placed beneath the smoke-box, were enlarged to 13 in . diameter by 20 in . stroke. The driving wheels were reduced to 5 ft .6 in., with outside axle-boxes, and the makers' plate was removed. The photograph reproduced on this page shows the locomotive as it then appeared.

In 1883, under Mr . Alexander McDonnell's regime, it was renumbered 1478 ; and two years later it became No. 66. It was again subjected to metamorphosis in 1886, when Mr. T. W. Worsdell was appointed locomotive superintendent at Gateshead. In May of that year it was renewed without a name, and lost all its original parts except the inside frame. The $2-2-2$ wheel arrangement was retained, sidetanks were provided, and new outside framing of solid slotted-out plate took the place of the built-up frames shown in the photograph.

As pioneer of the two-cylinder compound system that he had previously applied to some extent on the Great Eastern, Mr. Worsdell made drastic changes in the motive power of the N.E.R., and in 1892 No. 66 was given a leading bogie and larger side tanks, and the Worsdell-Von Borries compound system was applied. In this method of compounding the two cylinders are cast together, and to make room for the larger low-pressure cylinder they are placed between the frames at different angles, so that one overlaps the other. By means of the valve motion-Joy's valve gear being employed in this case-high-pressure steam is first admitted to the smaller cylinder, after which, by means of a flap valve, it passes at a lower pressure to the larger one. In starting the engine the driver may admit steam to both cylinders simultaneously by the action of a hand-operated valve. In the "Aerolite" as thus altered the high-pressure cylinder was 13 in . in diameter and the low-pressure one $18 \frac{1}{2} \mathrm{in}$., the stroke of 24 in . being the same for both.

In 1902 the engine was again altered by Mr. Wilson Worsdell, the frames being reversed and the bogie placed under the footplate, thus making it into a 2-2-4 tank. Finally in 1907 its nameplate was restored, and the original makers' number placed on the bunker -the only parts remaining of the old locomotive of 1851. In 1921 its present boiler, with Ross pop safety valves, was fitted.

The other locomotives shown at the Great Exhibition were all broken up many years ago except
(Continued on page 462)

RAILWAYS have developed their freight-carrying organisation to such an extent that goods of every conceivable variety are handled and transported in enormous quantities as a matter of everyday routine. Ingeniously-designed wagons have been constructed to convey livestock, perishable goods, and other freights that require special treatment; and generally speaking any load can be dealt with quickly and easily, provided that it comes within the dimensional limits of the loading gauge of the line. An entirely new problem arises when the loads to be carried exceed these dimensions either as regards height or width. Traffic of this kind is known as "out-of-gauge" traffic. Fortunately there is not a great deal of it, for it causes a large amount of special preparation and is frequently the source of considerable anxiety to the officials in charge.

When a company is asked to convey a consignment that exceeds the maximum load dimensions, the station agent forwards to headquarters a drawing showing the exact shape and dimensions of the consignment, and the question of whether the task should be undertaken or not is carefully considered. Frequently the load exceeds the standard gauge only to such a slight extent that it can be conveyed as part of an ordinary goods train, special precautions being taken when the train is travelling around curves or over junctions. The real trouble arises in what is known as total out-of-gauge traffic, for which special trains have to be provided.

As a general rule, total out-of-gauge traffic is handled only on Sundays when the ordinary traffic is at a minimum. The route to be followed is the first consideration, and this is carefully worked out to include the largest and most convenient bridges and tunnels, the easiest curves, etc. The result is often that an unusually bulky consignment may follow a very circuitous and apparently extraordinary route to reach its destination. In certain very exceptional cases, where a shade of doubt existed as to whether the traffic could clear certain points on the route, a template exactly reproducing the dimensions of the load has been constructed and run over the doubtful section of line. With this experience to guide them, the officials in charge of the consignment were forewarned against any special difficulties.

When the route is finally decided, notices giving the time of the train, the nature of the load and its dimensions are sent to every station through which the "special" will pass. As far as possible the train is timed so as to avoid encountering passenger trains en route. Sometimes this cannot be done, and in such cases the "special" must be brought to a standstill at a point where there is no curve of the line and where there is the necessary width between the up and the down tracks for the trains to pass. At some points there may not be sufficient clearance between the tracks and then it becomes necessary for the "special" to be shunted into a goods siding or on to a branch line well clear of the main and other running lines.

The 87 -ton stator passing through the bridge at Blacon as described in this article. The maximum height of this load was 13 ft .8 in . above rail level, and its width, 11 ft .6 in ., exceeded the loading gauge by 2 ft .

An inspector thoroughly conversant with the working of the particular line accompanies the "special," and he, and not the guard, is responsible for the safe working of the journey. If the
special" has to be handed over to another company before reaching its destination it is carefully examined by representatives of this company at the junction station before it is taken over.

Perhaps the best way of giving an adequate idea of the difficulties involved in "out-of-gauge" loads will be to take a typical case, such as that of the conveyance by the L.N.E.R. from Darlington to Middlesbrough of a new stern frame for the White Star liner "Olympic." Owing to its exceptional weight and dimensions the stern frame had to be constructed in two pieces, and even then each piece was of such size as to require a separate wagon. The larger piece was loaded on to a 70-ton trolley wagon and in order to keep it in position a 30 -ton balance weight was placed on the opposite side of the truck. The overhang of this section of the frame on the " six-foot" side was 15 ft .9 in . from the centre of the wagon, and on the platform side 6 ft ., the total width being 21 ft . 9 in. The second portion was loaded on to a 40 -ton trolley wagon and it overhung the " six-foot" way by 9 ft .10 in . The maximum height of the load was 13 ft .

In order to make the journey from Darlington in safety it was necessary to re-arrange entirely the existing goods service during the usual Sunday morning quiet period and to restrict the speed of the special train to five miles per hour. Even these precautions were not sufficient for, owing to the overhang, it was necessary on two occasions to re-adjust the position of one of the castings, and at one point to remove a signal post in order to obtain room to pass.

Another interesting feat of transport was carried out some time ago between Trafford Park sidings at Manchester, and Birkenhead. In this case the load was an 87 -ton stator built by the Metropolitan-Vickers Electrical Co. Ltd., for shipment to Japan. This huge stator was 11 ft .6 in . in width, 12 ft .4 in . in length and 10 ft . in height. When loaded on the railway truck it stood 13 ft .8 in . in height and in width was 2 ft . in excess of the loading gauge. Its transport involved a special train and the clearing of both lines for it over the entire distance.

The consideration of the route to be followed occupied some six months, and it was then arranged that this should be Trafford Park, Northwich, Mouldsworth, Chester, Birkenhead. A start was made one Sunday morning and the first trouble was a little argument with the awnings over the platform at Old Trafford Station. This was not serious, however, and in due course the train arrived at Helsby. It was then found that the load slightly exceeded the dimensions originally given, and considerable delay occurred. This delay was serious, because special arrangements had been made for transporting the vehicle to the steamer as soon as the train arrived. Various suggestions were made, and
it was arranged that the Metropolitan-Vickers traffic agent should meet certain railway officials next morning to decide upon the best course of action. The officials duly arrived at the spot, but the vehicle was nowhere to be seen!
Subsequently it was ascertained that a Cheshire Lines official had diverted the load to another route in the hope of getting it through quicker. Various difficulties were encountered on this new route, especially in regard to the bridges, which were barely large enough to allow the vehicle to pass. In one tunnel near Blacon it was actually necessary to take away the ballast and move the rails inward in order to get the load through! This was the last serious difficulty, however, and slowly but surely the train proceeded to its destination with nothing worse than the scraping of a few telegraph poles.

Occasionally special trains are arranged to handle certain traffic, not because the dimensions of the loads exceed the standard loading gauge, but owing to the exceptional weight of the traffic. One of the most interesting cases of a load of this type was a unique consignment of three $16-\mathrm{in}$. guns that had been built by Sir W. G. Armstrong Whitworth \& Co. Ltd., at Elswick for the great super-dreadnought, H.M.S. "Rodney," which at the time was under construction at Cammell, Laird \& Co.'s Birkenhead yard.

The task of moving these guns was entrusted to the L.N.E.R.,
and a special train was made up, consisting of a 4-6-0 locomotive No. 932 , two brake vans, six ordinary wagons, and three special sets of three trolley wagons each. Each of the guns was 62 ft . in length and weighed 105 tons, and the total length of the train with the guns mounted one on each set of trolley wagons was 143 yds. During the early part of the run from Elswick to Birkenhead the train's speed was restricted to $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , but later this was increased to $25 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

The stern frame of the "Olympic" on the way from Darlington to Middlesbrough. The enormous overhang of this frame made it necessary to attach a 30 -ton balance weight to the opposite end in order to keep it in position.

Another interesting consignment was hauled recently by the L.M.S.R., when three locomotives supplied by Beyer, Peacock \& Co. Ltd., of Gorton, Manchester, were conveyed from that company's sidings to the Alexandra Dock, Liverpool, for shipment. The engines were conveyed in sections, the larger pieces of which consisted of three engine frames weighing 48 tons, three tenders weighing 42 tons, and three boilers weighing 60 tons. When this consignment was loaded centrally and secured on suitable vehicles, the engine frames were 1 ft .11 in . outside the ordinary gauge limits, and the tenders 1 ft . beyond the ordinary gauge limits. This excessive width of load necessitated working by special train with the opposite line blocked in sections. The total consignment weighed in all 320 tons.
It will be easily understood that the staff engaged in this branch of railway work must be specially trained and must possess a peculiarly intimate knowledge of their company's lines.

What Shall I Be ?-(Continued from page 415)

county, city and borough police forces of Great Britain. Other important forces are maintained by the railway companies and dock authorities, the chief of which is the Port of London Authority. The men belonging to these forces have the task of guarding the premises controlled by their employers, and they are organised on similar lines to ordinary police. Full information in regard to the necessary qualifications and the addresses to which applications should be made may be obtained from the guides published by the special journals devoted to police matters, or from the Editor of the "M.M."
The position in Ireland is that there are two forces to which admission may be sought. These are the Civic Guard, the police force of the Irish Free State, and the Royal Ulster Constabulary, the corresponding force in Northern Ireland. These may be regarded as the successors of the former Royal Irish Constabulary. The regulations for admission to them are similar to those applying in Great Britain, and the conditions of service also resemble those in the forces with which we have already dealt. The rates of pay, allowance and pension in the Royal Ulster Constabulary are the same as in Great Britain. The members of the Civic Guard receive slightly lower pay.

It should be noted that recruiting for the Irish Police Forces is practically confined to the countries covered. The Royal Ulster Constabulary considers applications from candidates outside Ireland, but these must have been born in Ulster. The Constabulary is comparatively small, and as a result there is a long waiting list.

A word may be said here in regard to
police forces overseas. These may be divided into three groups, the first consisting of those administered by the Colonial Office, the second the Indian and Burmese Police, and the third including the forces in the self-governing Dominions. As far as the Dominions are concerned, vacancies in the various police forces are filled by men residing in them, and in no case can applications from this country receive consideration. Rates of pay and conditions of service in these forces usually are similar to those obtaining in Great Britain, due allowance being made for differences in cost of living, and readers who are qualified for admission to them may obtain the necessary information by applying to the head of the force in which they are interested.
A certain amount of recruiting takes place in this country for the Indian and Burmese Police and for the forces controlled by the Colonial Office. Generally speaking, the appointments granted are in the commissioned ranks, and a high educational standard is required from applicants, while in certain cases qualifications of a military character are looked for. Admission to the Indian and Burmese Police is by competitive examination, and certain other qualifications are required. Full information in regard to colonial appointments may be obtained from the Director of Recruitment (Colonial Services), Colonial Office, 2, Richmond Terrace, Whitehall, London, S.W.1; and for details of Indian and Burmese appointments application should be made to the Secretary, Service and General Department, India Office, London, S.W.1. Vacancies are not very frequent, particularly at the present time.

Roadless Transport-(Continuel from page 111)
members of the expedition were divided into four groups, each of which was to explore a separate route to the African coast of the Indian Ocean. The group led by M. Haardt set out for Mozambique, the chief seaport of Portuguese East Africa, travelling down the west coast of Lake Nyasa and through Portuguese territory. The port was reached after eight months of struggle through swamps and jungles, and across-swollen rivers, and from there they sailed to Madagascar, where the four groups of the expedition eventually re-united before returning home.

We have mentioned that creeper track vehicles have been used successfully for transport service over steep snow-covered ground. For instance, a Citroën Kegresse vehicle ascended the snow-covered passes to the St. Bernard Monastery, Switzerland. The vehicle that accomplished this feat was equipped with long wide creeper tracks, a special undershield protecting the engine and transmission from snow, and skis were fitted under the front wheels. The Monastery stands at a height of 8,100 ft. above sea level, and before this ascent was only accessible to ski-runners during eight months of the year. The creeper track vehicle first climbed Mt. Montets, $4,600 \mathrm{ft}$. in height, and then Mt. Forclay, 1,000 ft. higher. Finally, it negotiated the severe gradients, covered with deep drift snow, from the Cantine to the Monastery itself. The vehicle accomplished the difficult climb without faltering, and its success afforded striking proof of the utility of creeper track vehicles as a means of maintaining communication throughout the year with places hitherto isolated by deep snow for many months at a time.

FROM OUR READERS

These pages are reserved for articles from our readers. Contributions not exceeding 500 words in length are invited on any subject of general interest. These should be written neatly on one side of the paper only, and they may be accompanied by photographs
or sketches for use as illustrations. Articles that are published will be paid for at our usual rates. Statements contained in articles submitted for these pages are accepted as being sent in good faith, but the Editor takes no responsibility for their accuracy.

A Journey from Lake Nyasa to Beira

The first stage of our long journey from Nyasaland to England began about 10 o'clock one morning, when we left Fort Johnstone, at the southern tip of Lake Nyasa, in a motor car. The road to Zomba, our first halting place, is little better in places than a cart track until the mountains south of the Lake are reached, but there it winds in and out in beautiful surroundings. Zomba is the headquarters of the Nyasaland Government, and is on the slopes of Mount Zomba.

Next day we travelled on to Blantyre, the railway terminus, making the journey in a mail van, for this was the only vehicle available. The mail bags did not form very comfortable seats! Then followed a slow and

Arches in the ruins of the bath house at Cilurnum, a fort on the Roman wall built by Hadrian. tiring railway journey through the jungle, the monotony being broken only when the train ran along the banks of the Shire River, which drains Lake Nyasa. Finally we reached Port Herald, where our luggage was examined by customs officers, for we were now entering Portuguese East Africa; and at 7.30 in the evening we reached Morassa on the Zambesi River, after having been in the train since 6 o'clock that morning.

The next stage in our journey was a night trip on the Zambesi in a steamer. We had dinner on the boat, but the insects that dropped into the food from the lamps above prevented me from enjoying it. Early next morning we arrived at the railhead south of the great river, and there we took the train for Beira. crags. The fort of Borcovicus is at Housesteads, in this wild and practically uninhabited section of the country, and its buildings therefore are to-day more nearly complete than those erected in more populated areas. On the moors it is possible to walk along the top of the walls for miles without a break and I did so for a considerable distance westward towards the place where it begins to descend to the Lowlands on its way to Burgh-on-Sands on the Solway.
F. E. Wilson (West Hartlepool).

The remains of a fort at Cilurnum. The two photographs on this page were taken by our This portion of the journey also was wearisome and the only excitement that we had camewhen our train was cheered by crowds of excited natives. I noted that the sleepers on the track are made of steel, the reason being that ants would destroy those made of wood. When we arrived at Beira we had been travelling for a week and were glad to take up our berths on the roomy and comfortable "Landaff Castle."
W. Urguhart (West Worthing).

With a Sketch Book at the Docks

During the past year I have visited many of the largest and busiest dock systems in Europe, including those at London, Belfast, Manchester, Antwerp and Dieppe, and the accompanying sketch is based on impressions gained during these visits. It is intended to illustrate those features of a large dock system that a Meccano boy finds most interesting, for it shows the gigantic liners and cargo boats, and the immense cranes that, together with high speed ship coalers, elevators and conveyors also seen near docks, form an almost inexhaustible store of subjects for modelbuilding. I find a visit to the docks very useful when I am in search of suggestions for new Meccano models, or for further schemes of operation on a Hornby layout. A sketch book must be used, of course, but I find that the task of noting down the chief features of an attractive crane or some other piece of machinery adds a thrill to my visit. E. Whittaker (Leeds).

Among the Indians of British Columbia

The Indians living near Hazelton, in the north of British Columbia, have retained more of their native customs and style of dress than those of their race who have been more closely associated with white men. The photograph on this page shows a group of four chiefs and medicine men who took part in a pageant held in 1928 at Fort St. James, by the Hudson's Bay Company, to celebrate the centenary of an official visit to the Fort by Sir George Simpson. Sir George was Governor of the Company about a century ago, and his visit helped to secure that part of the country that part of the country
for the British Empire. Indian sports and games, including war dances and speeches, were a special feature of the centenary celebrations.

The chiefs in the centre of the group are wearing the ceremonial blankets or robes of the Chilkat Indians. These blankets are made of the white wool of the mountain goat, coloured yellow, black or greenish blue with native dyes. Red cedar bark and sinews of caribou
or whale are interwoven with their threads and their sides and lower edges are heavily fringed. The designs on them are purely native in origin and are totemic in character, representing the animals, fish or birds that are the personal totems of the wearers., Great care is taken in weaving the blankets, a year's work being necessary to complete a single robe. The wool is dyed after it is spun, and for each colour used the wearer fasts a day in order to ensure uniformity in-shade.

The Indian shown on the left of the accompanying photograph is wearing a dress famous throughout the district as the " Costume of a Thousand Thimbles," because of the number of sewing thimbles with which it is decorated. These have been carefully collected in order to adorn his coat, and they jingle in an extraordinary manner when he dances to the beat of a drum. They even tinkle as he breathes! R. Watson (Manitoba, Canada).

A Strange Pet

When we first saw our cassowary he was no larger than a full-sized rooster. He hailed from New Guinea, and had been given to my father by the captain of a ship that plied between the island and

Australia. We kept him in our compound in the East Indies. He soon became tame and was allowed to roam about at will, although he very seldom wandered out of the compound. When he did we usually found him surrounded by curious natives, who were surprised to find a bird that could not fly.
I do not know if all cassowaries have occasional fits of insanity, but our bird certainly did, and then he would dash furiously through the compound, kicking everything that came in sight. He leaped

Four chiefs and medicine men of the Chilkat Indians, a tribe of British Columbia They are
wearing the ceremonial Indian dress and our photograph was taken by our contributor, wearing the ceremonial Indian dress and our photograph was taken by our contributor, R. Watson, Manitoba, Canada.
 on top of a cylindrical basket when in one of these fits. Naturally it rolled from under him, and it was a very bewildered-looking cassowary that rose to his feet.
The bird was not very intelligent. Whenever a daring chicken stole a beakful of his rice, he chased it round the compound. This was always a splendid opportunity for the other chickens, who promptly demolished the rest of his dinner !
K. Kellar (Glasgow).

Here we revietw books of interest and of use to readers of the "M.M." We can supply copies of these books to readers who cannot obtain them through the usual channels. Order from Book Dept., Meccano Limited, Old Swan, Liverpool, adding $1 /-$ for postage to the price. Postages on different books vary, but any balance remaining will be refunded.
"The History of Everyday Things in England," 1066-1499 By. M. and C. H. B. Quennell (B. T. Batsford Ltd. ${ }^{8 / 6}$ net)

This interesting volume gives us the history of England from the time of the Norman Conquest to the end of the Middle Ages, but instead of dealing chiefly with the lives of kings and accounts of their wars, as most history books do, the authors tell us the story of the people themselves. They picture for us our forefathers at work and at play, and the many excellent illustrations help to make their account a very interesting one indeed.

The volume is divided into four parts, each dealing with a period of a century, and we are able to follow the changes that took place in warfare, trade and commerce, agriculture, building, and in many other important aspects of everyday life. In the first chapter, we see the castles built by William the Conqueror and his Norman barons to overawe the conquered Saxons, and we learn how their occupants lived in them. Life was then very crude, for only the very rich and powerful had private rooms and the majority of the inhabitants of the castles lived in the hall, the floor of which was strewn with rushes. From the castles we turn to the monasteries, then the great centres of civilising influences, and the influence of the monks on agriculture is made clear. We see how the common people lived; how the land was ploughed, sown and reaped; how cooking was done; and how the monks themselves passed their time ; and we are even given pictures showing how such a homely occupation as hair-cutting was practised 800 years ago.

The chapter dealing with the 13 th century is planned on similar lines, and traces the many interesting developments that followed. The strong but simple castles of William the Conqueror's time were succeeded by the magnificent fortresses at Caernarvon, Conway, and Harlech. It is interesting to find that life in a country manor house of the 13th century was much more attractive than in the ruder houses of earlier times. Carpets had replaced the rushes of the previous century. It is interesting to read of Spanish ambassadors who visited this country during the reign of Henry III that "the walls of
their lodgings in the Temple were hung with silk and tapestry and the very floors covered with costly carpets." Even baths had been introduced by this time, the credit for this momentous step being thought to be due to Eleanor of Castile, the Spanish lady who married our King Edward I.

In those days books were few and the
in cock-fighting, bear- or bull-baiting, wrestling and other sports."

The next century was that of the Black Prince and the Battle of Crecy. The knights who took part in the French wars and their brave deeds are dealt with, but the authors devote most of their space to descriptions of the daily life of the people themselves, and we have some attractive pictures of country life reproduced from the Luttrell Psalter. These show ploughing, sowing, reaping and threshing operations, and even the small boy slinging stones at the birds in order to prevent them from stealing the seed is not forgotten.

The remaining chapter is devoted to the 15 th century, when the Middle Ages were coming to an end. At the beginning of the century came Agincourt, and later the Wars of the Roses nearly destroyed the nobles, but the life of the common people went on throughout the period of these great
coming of strolling players, minstrels and jugglers formed an agreeable break in the ${ }^{2}$ monotony of hours spent by the men in mending their bows, or sharpening other dweapons, and by ladies in needlework.

The author of "Tinker, Tailor-" (reviewed on this page) in winter kit at Regina, Canada.
Dancing and a game that was the forerunner of blindman's buff were very popular, but tournaments were the chief amusement of the men. A chronicler says that " the young bachelors pass their time with sham fights and other exercises, also
struggles, and trade and commerce flourished. Striking developments took place in connection with learning and libraries began to be formed even before the development of printing. The monks then actually made books as well as read them, and as these were very valuable, they often bore quaint warnings and entreaties to the reader, such as "Wash! lest touch of dirty finger On my spotless pages linger." Some of these warnings were in the form of curses on those who stole or destroyed a book, and it is pointed out that "when a boy nowadays writes in his book that no one is to purloin it under various fears, he is only doing, what the mediæval monk did before him.'

It is impossible in a short review to mention all the wonderful things dealt with in this interesting volume, which is one that may be read with pleasure and profit by all who wish to know how their ancestors in these islands lived and worked. The illustrations include many half-tone plates in addition to full-page drawings and sketches in the text, and there is also a coloured frontispiece.

"Tinker, Tailor-"

By "Greenhorn." (The Bodley Head, $\mathrm{s} / 6$)
This account of a journey round the world for a wager is written by an adventurous young man who hides his identity under the pen-name of "Greenhorn." After having run away from school, the author served in France, when a severe nervous breakdown made it seem likely that he would "go to pieces" altogether. In order to save him, a friend laid him a considerable wager that he would not work
his passage round the world in five years without accepting any money whatever from home. "Greenhorn" accepted the challenge and won through, but what was of greater importance was that in the process his health and mental stability were restored. The story of his five years of adventure makes interesting reading. We are with him in all kinds of jobs and places from lumber camps to mines; in sailing ships and tramps; assisting a sheep farmer in Australia; as a plate boy in a third-class liner; and as a steward in an emigrant ship.

On his first job (in New York, as a newspaper canvasser), he made only about enough to pay for his shoe leather. It was whilst walking down Broadway that he saw a notice " Hands Wanted," and, having been taken on, commenced unpacking spools of thread as hard as he could go. " I never knew quite why I had to unpack them, because a minute later they were snatched up by another man and repacked! I was simply a cog in a vast machine of which I understood the purpose not at all. However, they paid me twelve dollars a week for being a cog in their machine, a sum on which I could just, but barely, exist,'

From New York he went to the woods as a lumber jack, where he was often in danger from exposure. "One day in late winter I was told off to help Pete collect an extra-heavy load of provisions. We spent the night at the store. Very early next morning, with angry black clouds above, we started our journey back. Eventually it became a blizzard and impossible to travel, and the dogs and ourselves all huddled down by the sled and waited for it to pass. After the blizzard came such a frost as I had never known-fifty below it seemed to go, and then down again below that. The going was terrible and presently we stopped to rest; as I turned to Pete he bellowed at me, 'Bill, your face is frozen-get some snow on it-quick!' At the same moment I caught sight of his face and saw that one side of it was a queer dirty grey-white. 'And so's yours,' I shouted back, as I flung myself down in the snow and rubbed my face with it till some sort of circulation came painfully back. We started off again, but we were still four hours from camp and in half an hour our faces were just as bad as ever, and my left hand and arm had begun to go too. From then on it was a continual struggle to get some circulation going and then to travel as far as we could before it stopped again. Anyone who has had a touch of frostbite knows the pain of returning feeling-well, that was our guide ; directly the pain ceased we knew we had to stop and rub ourselves with snow. At last, just before dusk, after what seemed like weeks of nightmare travel, we got back to camp. The cold had been so great that the men had refused to continue work and had all come in from the woods early in the day. Anyhow, they worked hard enough on us getting our circulation back, and when it finally came the stinging and biting was almost unendurable."

From lumbering "Greenhorn" went south to the oil fields; then, after some fun on a horse ranch, northwards again, to work the harvest. After a spell in

Canada, where he joined the Royal North West Mounted Police, he shipped before the mast in a windjammer to the South Sea Islands, where after prospecting for gold, he was down and very nearly out. However, he managed to get to Australia, and from a job on a sheep station he saved sufficient to enable him to pay his passage to New Guinea, whence he worked his passage to South Africa, back again to Australia, and finally England.

On a beautiful sum- mer dawn, the cliffs of England sparkling into the shine, while I stood fo'c'sle head and and then couldn't

"Wagon Details and Construction "
 By P. H. Saunders, A.M.I.Loco.E., M.I.E.I.

(Crosby, Lockwood \& Son. $7 / 6$ net)
A railway wagon at first sight seems to be a very ordinary and utilitarian piece of work, but careful examination of even the common coal truck reveals much of interest to the railway enthusiast. This is particularly the case now that all-steel wagons are rapidly coming into more general use. "Wagon Details and Construction," therefore, is likely to be an acceptable book not only to those connected with this branch of engineering but also to those who, though not professionally concerned with the industry, are yet keenly interested in its many phases.

The author writes as a result of practical experience in his subject both in this country and in Germany, and he deals with it in a very comprehensive manner. The manufacture of steel wagons, the various processes involved from the bare frames to the finishing and, in the case of wagons for abroad, packing for export, are well described. Special attention is given to the different presses and see them, because something seemed to have gone wrong with my eyes! Five years, all but a day, I should have been away! Five years that had given me physical health and strength, and a good grounding in how to bear with the ' clutch of circumstance.' But what was I coming back to ? For a moment, in spite of the extraordinary pull I felt towards England herself-her earth and grass and trees, a physical longing for her meadows full of buttercups, and for

Out in a motor-boat at New York. From "Tinker, Tailor-" reviewed on the previous page.
the long, humped, brown shoulders of her moors-I was sorry the five years were over."
' I was coming back to my own country, to my own people," he continues. "For the pure fact of that coming back from strange to homely things, if for no other reason, the wager had been worth while."
forging machines used for the forming of the various parts of the structure, and the probability of welding superseding riveting is hinted at. It is interesting to learn that reconditioning of worn tyres can be carried out by the deposition, by welding, of sufficient metal on to the tyres to allow them to be finished up satisfactorily. Much useful information regarding axle-boxes and bearings generally is included, while springs and the interesting machinery for their manufacture are not neglected. The care to be taken in painting, particularly in dealing with steel wagons, and the advantages of modern methods of spraying are pointed out by the author, who rounds off the book by giving a classified list of materials specified for various parts.

The book is well illustrated by photographs and drawings, and its general style is well up to the usual standard of "Lockwood's Manuals."

Interesting New Books

The undermentioned books, recently published, will be reviewed in a future issue.
The Indian Ocean
by Stanley Rogers.
(Harrap, 7/6)
Seventy Fathoms Deep
(Faber \& Faber, 12/6)
by David Scott.
by P. M. Henshaw. (Gale \& Polden, 1/6)
The Romance of Speed
Railway Literature 1556-1830
by R. A. Peddie.
(Grafton, 10/6)
Cine-Photography
by J. H. Reyner.
(Chapman \& Hall, $10 / 6$)
Watchings Among Birds
by H. A. Gilbert.
(Arrowsmith, 10/6)
Wonders of the Sky
by Miss Mary Proctor.
(Fredk. Warne, 6d.)
The Sea Ghouls
by E. F. Spanner.
(Sampson Low, 7/6)
Fisherman and Fishing Ways
by Peter F. Anson.
(Harrap, 7/6)
SEA-Dog3 OF To-day
by Alan J. Villiers.
Stamp Collecting
by Stanley Phillips.
(Harrap, 7/6)

Wire Splicing
by R. Scot Skirving. (Brown, Son \& Ferguson, 2/-) Plants: What they Are and What they Do
by A. C. Seward. (Cambridge University Press, 4/6)

Thousands of Meccano model-builders all over the world have been waiting for the results of the $£ 500$ Model-building Contest. The Contest closed for entries on the 31st March, and since that date the judges have been hard at work on the huge number of entries. No one who has not had the experience can have any idea of the enormous amount of work involved in handling a competition of this kind, for each entry has to be very carefully scrutinised and often re-examined several times before a final judgment on its merits can be reached. During the run of the Contest every post brought entries from all parts of the world. England and

"PUFFing billy" locomotive

The
1932 "Book of Prize Models"
This splendid book will be published on the 25th June. It may be ordered from any Meccano dealer, price 9d., or direct from Meccano Ltd., price $10 \frac{1}{2} \mathrm{~d}$. post free. Orders will not be acknowledged but will be dealt with in strict rotation as soon as the book is published. The Overseas prices from dealers will be as follows Australia, 1/9; New Zealand and South Africa. 1/-; Canada, 25 cents. Readers living in countries other than those mentioned should order from Meccano Ltd. Old Swan, Liverpool, sending a remittance of $1 / 2$ with their orders.

SECTION "A"

(Competitors over 18 on 31 March, 1932) Five First Prizes of Cheques for $£ 6.6 \mathrm{~s}$. Anglada, J., Barcelona (Electric Passenger Lift). Bulot, A., Calais, France (Dragline).
de Proft I.,Willebroeck, Belgiun (Ling Machine) Willems, J., Hoboken, Belgium (Cranes, etc.).
Five Second Prizes of Cheques for $£ 4.4 \mathrm{~s}$.
Cameron, K. W., Claughton, Ches. (L.M.S. Loco).
Caton, W., Liverpool (Ferry Boat)
Holmes, A., Manchester ("Puffing Billy" Locomotive). Hoyaux, P., Antwerp (Marine Steam Engine). Ringnalda, J., Leeuwarden, Holland (Locomotive).
15 Third Prizes of Cheques for $£ 2.2$ s. Boulton, W., Bolton (Sectional Model of a Coal Mine). Brown, C., Edinburgh (Fire Engine).
Bull, K. , Oslo (Crane).
Burgh, P. v. d., Dordrecht, Holland (Motor Tractor) Carpenter, G., Kimpese, S. Africa (Dividing Engine). Coates, J., Toronto (Breakdown Crane)
Dommelen. K, v., Antwerp (Antwerp Cathedral), Jscreet, P., Durban (Articulated Locomotive).
Jukes, R., Christchurch, New Zealand (Churn).
Matthews, J., Fillongley, Nr. Coventry (Saloon Car) Robson, T., Amman, Transjordania (Armoured Car). Rauvin, F., Geneva (Telpher).
Vecchini, W., Ancona, Italy (Aerodrome, Aeroplanes).

The following competitors share

 Meccano and Hornby Train goods of a total value of $£ 60$A. Adams, Durban (Crane) ; W. Albert, Calais (Roundabout and Revolving Aeroplanes); J. Bakker, Hilversum ("Penny-in-the-Slot" Automatic Machine), P. Banks, Dunstable, Beds. (Floating Crane); G. Baracco, Torino (Orrery); C. Bardenfleth, Ruysted
Kyst, Sjcelland, Denmark (Wind Motor) ; N. Kyst, Sjcelland, Denmark (Wind
Batchelor, Westcliff-on-Sea (Crane); ; Motor) ; $\begin{gathered}\text { N. } \\ \text { F. }\end{gathered}$ Beard, Batchelor, Westcliff-on-Sea (Crane); F. Beard,
Bournemouth (Four Masted Barque) ; J. Beardsley, Bournemouth (Four Masted Barque) ; J. Beardsley,
Chesterfield (Battle Cruiser) ; A. Beck, Rotterdam Chesterfield (Battle Cruiser) ; A. Beck, Rotterdam
(Aeroplane) :
P. Begemann, Semarang, Java (Self(Aeroplane) i P. Begemann, Semarang, Java (SelfRecording Water Level Gauge); E. Bodenhagen, Copenhagen (Electric Sign); Josè Luis Bribiesca, Mexico, Republica de Mexico (Set of Chess Men) H. Buhler, Bern, Switzerland (Electricity Generating Station) ; F. van Bulck, Brussels (Coal Truck Tipper); André Capart, Brussels (Motor Chassis) ; M. Carreras Barcelona (Tractor); M. Charles, Le Mans (Gear Cutting Machine) ; W. Chatfield, Hamilton, Ontaric (Vertical Lift Bridge) ; M. Chauvelot, Paris (Wool (Calculating Machine) ; ${ }^{\text {W }}$ W. Clement, Willington, Co. Durham (Models of Machine Tools) ; M. Cochie, Brussels (Electric Locomotive) ; W. Cole, Felbridge, ${ }^{\text {Brussels ((Electric Locomotive) ; W. Cole, Felbridge, }}$ Sussex (Motor Car Chassis) ; S. Coleman, London,
 (Travelling Crane) ; W. Cripps, St. Albans (Traction Engine) ; W. Cross, Crossgates, Fife (Yacht); T. Cullaré, Barcelona (Inertia Machine) ; S. F. Desai,
Bombay (Laboratory Balance) ; E. Dodson, South Wigston, Leicester (Elastic Weaving Machine); J. Estrello, Madrid (Military Tank, Crane, and other J. Estrello, Madrid (Military Tank, Crane, and other Printing Machine); G. Howard, Ganderton, Auckland N.Z. (Log Hauling Truck); A. Gernaert, Brussels N.Z. (Log Hauling Truck) ; A. Gernaert, Brussels
(Electric Telpher) ; P. Goffin, St. Gilles-Waes, Belgium Electric Telpher) ; P. Goffin, St. Gilles-Waes, Belgium
(Beaming Machine); G. Goiffon, Marseille (Vertical Sawing Machine); C. Goodchild, London, W. 12 (Grandmother Clock) ; W. Govan, Toronto (Locomotive) ; L. Grey, Cowes, I.O.W. (Mechanical Coaling Plant) ; R. Harris, Haywards Heath (Motor Coach) ; G. Henwood, Takapuna, Auckland, N.Z. (Cable-laying Machine) ; F. Heszig, Lotswill, Switzerland (Roundabout) ; H. Hill, London, S.W. 16 (Sky-scraper) G. Honore, Tourcoing, France (Wool Balling Machine) ; G. Jefferson, Ely, Cambs, (Electric Light Dimming and Colour Changing Machine); C. Keated, London, S.E. 21 (Floating Crane); ; T. Kennett, Sheerness
(Ship's Engine); F. Keys, London, S.E. 22 (Beam (Ship's Engine) ; F. Keys, London, S.E. 22 (Beam Vibrations) ; G. King, London, S.W. 17 (Refuse collecting Motor Lorry) ; L. Knill, Leeds (Crane) S. Kurlawala, Bombay (Circulating Pump) ; G. Leach, Sheffield (Excavator) ; J. Leeson, Brigg, Lincs, (Floating Whale Oil Factory, Church and Fire Engine) F. Lehavre, Liêge (Roundabout) ; Mrs. D. Littlejohn, (Spinning Mule) ; B.' Mace, Nottingham (Motor Lorry) ; J. Magnussen, Oslo (Sports Motor Car) Camillo Marcantonio, Rome (Aeroplane); J. Mareel, Tourcoing, France (Cement Mixer); G. Marmieri Milan (Device for Viewing Steroscopic Photographs) F. Marquand, Woodville, N.Z. (C.P.R. Locomotive) ; J. Martin, Rotherham (Electric Trolley Omnibus) M. Merzeau, St. Jean d'Angely, Charente, L.Inf (Crane, and other Models) ; J. Moncomble, Nice (Motor Lorry): T. Mumby, Caistor (Priestman Excavator) ; K. Murby, Cheltenham (Motor Bus Chassis) ; J. Nuttall, Heywood, Lancs. (Motor Chassis) V. O'Toole, Geelong, Victoria (Fire Escape); G. Page, Newcastle-under-Lyme (Wind Pump); A. Palmer Ramsey, St. Marys, Hunts. (Racing Car)'; R. Pascaud Chaumont, Hte. Marne (Locomotive) ; C. Pequiquot Calais (Windmill) ; J. Pienaar, Johannesburg (Motor

Omnibus) ; Willi Polke, Salzgetter, Germany (Rivetter)'; W. Pompe, Ysselstein, Utrecht (Vibration Recorder) ; J. Powell, Queensferry,
(Dremonstrating Mechanical Principles); Chester
C. Rizzoli, (Demonstrating Mechanical Principles) ; C. Rizzoli,
Parma (Automatic Grab); A. Rose, Birmingham (Castle) ; E. Staplin, Bristol (Torsion Pendulum Clock); E. Stedman, Maidstone (Motor Lorry) ; H. Stevens, London, S.E. 18 (Searchlight) ; R. Storrar, Letham, Ladybank, Fifeshire (Glider) ; L. Suarez-Inclan, Madrid (Ferris Wheel and Mountain Railway); W. Suter, Hadleigh (Structural Model) ; H. Symes, Johannesburg (Screw Cutting Lathe); C. Taylor, Ashburton, N.Z. (Steam Lorry); J. Thompson,
Glasgow, W. 4 (Striking Clock);
G. Tremblay, Glasgow, W. 4 (Striking Clock); G. Tremblay, Eaglescliffe, Co. Durham (Petrol-driven Locomotive); M. Tschumi, St. Imier, Switzerland (Tramcar) ; V. Uyttenbroeik, Antwerp (Cargo Discharging Plant); J. Verdavainne, Valenciennes (Loom); H. Walter, Adelaide, S. Australia (Electric Rail Car) ; A. Warren,
Norwich (Guillotine Cutting Machine) ; J. Wauquier, Norwich (Guillotine Cutting Machine) ; J. Wauquier,
Houilles, Seine-et-Oise (Aeroplane Catapult and Cargo Houilles, Seine-et-Oise (Aeroplane Catapult and Cargo
Hoisting Plant) chester (" Garratt" Type Locomotive) ; R. Willems, Hoboken lez-Anvers, Belgium (Electricity Generating Station, complete with Machinery) ; J. Wilson, Aberdeen (Wastepaper Cleaning Machine); A. Wiseman, Haverhill, Suffolk ("Sentinel" Steam Wagon) ; E. Worthington, Vancouver, B.C. (Canadian "Snagboat "') ; A. Wright, Westeliff-on-Sea (Sports
Car)
The following Competitors each receive

a Certificate of Merit

M. Baker, Wallington, Surrey ; H. Buswell, Nottingham; W. Butler, Poynton, Cheshire ; J. Capurro, W. Criblez, St. Imier, Switzerland; A. Dal Maso, Vicenza, Italy; A. Field, London, N.E. 8 ; A. Figgett, Chatham; R. Forsyth, Stranraer; L. Gascoigne, Chelmsford; X. Giroud, St. Etienne ; A. Guilourt, Bar-sur-Aube, Aube; M. Guilourt, Bar-sur-Aube,
Aube, France; J. Howe, Belfast; L. Hurtley, KingAube, France; J. Howe, Belfast; L. Hurtley, King Miss, Nova Scotia; N. Ireland, Lytham-St.-Annes ; fries. ; M. Kucharsky, Montreal ; F. Limat, Geneva; S. Luckin, Horley, Surrey; M. Machin, Moseley, Birmingham; T. MacLachlan, Dunedin; Magnifico Giuseppe, Bari, Italy; J. Prémont, Brussels; H. Simonin, Audincourt; P. Sisley, Surbiton, Surrey ; W. Swinnen, Wavre, Brabant; E. Sykes, Johannesburg; Mrs. V. Sykes, Johannesburg ; G. Thomas,
Toulouse ; W. Waters, London, W.C.1 ; H. Wright, Middlesbrough.

SECTION "B"

(Competitors over 16 and under 18)
Five First Prizes of Cheques for $£ 5.5 \mathrm{~s}$.
Marson, L., Bexhill-on-Sea, Sussex (Refuse Collector) McCain, C. J., Sydney, N.S.W. (Steam Wagon). Park, A. S., Calgary (C.N.R. Locomotive). Tombeaux, P., Courtrai (Bucket Excavator). Viney, R., Manchester ("Royal Scot" Locomotive).
Five Second Prizes of Cheques for $£ 4.4 \mathrm{~s}$.
Garner, J. K., Hampton-in-Arden (" Scammell" 65 ton Transporter Lorry).
Pantanella, Francesco, Rome (Typewriter).
Turner, E.'S., Toronto (Petrol Tank Lorry).
Wallace, R. J., Wanganui, N.Z. (Mantel Clock).
Whalley, G...Brockville, Ontario (Dredging Crane)
15 Third Prizes of Cheques for £1.1s. Begemann, C., Java (Girder Bridge).
Belkum, P. v., The Hague (Diesel Engine).
Bryant, H., Wellington, Som. (Double Deck Omnibus) Colencrander, J., Braukelen, Holland (Crane). Dommelen, H. V., Antwerp (Lifting Bridge). Etherington, A., Bradford, Yorks. (Saloon Omnibus). Fairfield, Miss W., Bowdon, Cheshire (Cable Machine). Harris, J., Sanderstead, Surrey (Fortune-telle
Heris, R., Brussels (Grabbing and Lifting Crane). Hers, J., Potchefstroom (Calculating Machine). Huszar, W., Bergen (Printing Press).
Johnston, A., Dunstable (Front Wheel Drive Omnibus). Morris, R., Stratford-on-Avon (Dough Kneader). Sokol, R., Buenos Aires (Electric Locomotive). Stone, K. and Hurley J. (Joint Entry), Knowle, Bristol
(Furniture Removing Van).

Meccano and Hornby Train goods to a total value of $£ 50$ divided among the following competitors

R. Ackroyd, Wakefield (Six-Wheeled Motor Lorry) ;
G. Alington, Invercargill, N.Z. (Leyland "Hippo" G. Alington, Invercargill, N.Z. (Leyland "Hippo"
Motor Lorry) ; W. Bais, Medan, Dutch East Indies (Motor Chassis) ; D. Baker, Birmingham (Six-Wheeled Motor Lorry) ; F. Baldauff, Luxembourg (Fire Engine); M. Barbera, Valencia (Mechanical Game) ; H. Bell,
Hoylake, Cheshire (DO.X Flying Boat) ; W. Bellemare, Hoylake, Cheshire (DO.X Flying Boat) ; W. Bellemare,
Drummondville, Quebec (Cinematograph); C. Boras, Drummondville, Quebec (Cinematograph) ; C. Boras,
Perigueux (Military Motor Lorry equipped with AntiPerigueux (Military Motor Lorry equipped with Anti-
Aircraft Guns): J. Borgeron, Bayonne (Marine $\begin{array}{ll}\text { Aircraft } & \text { Guns) ; J. Borgeron, } \\ \text { Engine) ; Bayonne (Marine } \\ \text { M. Bosch, Maastricht (Electric Crane) ; }\end{array}$ B. Bracci, Montepulciano, Italy (Scenic Railway) ; W. v. d. Broek, Utrecht (Swivelling Bridge) ; G.
Brule, Longueville, Seine-et-Marne (Hammerhead

Crane) ; R. Cabral, Buenos Aires (Motor Chassis) ; W. Cansick, London, N.I (Six-Wheeled Steam Wagon); E. Casamada, Barcelona (Theatre) ; J. Churchward, Brighton, Victoria (Floating Crane) ; W. Clayton, Clondalkin, Co. Dublin (Four-Cylinder Marine Engine) A. Coenders, Utrecht (Electric Tramcar); F. Corby, Reading ("Scammell" Transporter Lorry); S.
Cowley, Prestwich (Swing Bridge); W. Crichton, Cowley, Prestwich (Swing Bridge) ; W. Crichton,
Glasgow (Steamship) ; H. Crook, Ashton-in-Makerfield Glasgow (Steamship) ; H. Crook, Ashton-in-Makerield
(Racing Seaplane); C. Cuyas, Zaragoza, Barcelona (Loom); G. Dalvit, Buenos Aires (Typewriter) ; A. Davidson, Ashburton, N.Z. (Dragline) ; L. Davis, Essendon, Victoria ("Leyland" Motor Lorry) ; J Delahaye, Armentieres (Gantry Crane) ; H. Dicken,
Wrexham (Portable Crane) ; E. Eason, Wilmslow, Wrexham (Portable Crane); E. Eason, Cheshire (Locomotive Crane); R. Emuss, Cranleigh, Nr. Guildford (Vacuum Cleaner) ; A. Farr, Norwich (L.N.E.R. "Ctty of York" Locomotive); D. Field, Bruton, Som. (Motor Car) ; J. Foley, Kingwilliamstown,
S. Africa (Model Workshop) ; E. Fûsslein, Zululand (Gang Plough) ; N. Gernat, Leigh-on-Sea ("Sentinel' Steam Wagon) ; R. Gouldbourne, Newcastle-under Lyme (Racing Car) ; Frederico Gorio, Rome (Catapul for Launching Aeroplanes); C. Green, Purley, Surrey
(Electric Passenger Lift); L. Hadley, Toronto (Electric (Electric Passenger Lift); L. Hadley, Toronto (Electric Locomotive) ; A. Hall, Accrington (Excavator);
J. Hampshire, London, S.W. 19 -(Ocean Liner); A. Hampson, Widnes (Motor Chassis); R. Harman, Sydney (Omnibus); D. Harrison, Benalla, Victoria (D.H. " Gipsy Moth" Aeroplane); N. Heathcott, Salmon Arm, B.C. (Swivelling Crane) ; J. Hedey,
Johannesburg ("Sentinel" Eight-Wheeled Steam Johannesburg "Sentinel" Eight-Wheeled Slane AirLiner); W. Hicken, Mansfield (Conveyor Bridge) ; W. Hills, Maidstone (Aeroplane) ; J. Holleboom, Amsterdam (Drilling Machine) Kaile, Mayford, Nr. Wlectric Locomotive) ; Waile, Mayord, Nr Woking (B.S.A. M Kaptein, Soest motive and Passenger Liner) ; M. Kaptein, Solland (Automatic Electric Contact Making-andBreaking Machine) ; J. Kastelian, Stoke Newington Breaking Machine) ; J. Kastelian, Dorking, Surrey Lawn Mower) ; 'T. Kock, Kristianshavns, Denmark Jib Crane) ; Armand Laquieze, Toulouse (DO.X lying Boat) ; G. Lefevre, Oakham (Motor Chassis) Mariano de Luca, Naples (Threshing Machine), R. Mason, Newcastle-under-Lyme (Planing and Sur R. Mason, Newcastle-under-Lyme (Pa Merce-Platero, acing Machine for Wood Working) ; Midgley, Southamp Madrid (Autogiro Aeroplane) ; R. Midgley, Southamp Louth (Oil Engine) : F. Muller, Mulhouse (Electric Louth (Oil Engine) ; F. Muller, Munouse (isectoc Tramcar) ; A. Ness, Port Dalhousie, Ontario (Lock (Motor Coach) ; G. Nisbet, Melbourne (Electric Goods (Motor Coach) ; G. Nisbet, Melbourne (Electric Goods (Cargo Ship); N. Paola, Durban (Electric Tramcar); I. Phillips, Fulstow, N. Thoresby (Windmill) ; W Richardson, Ballinscurra, Limerick (Ship Coaer)
Lorenzo R. Riva, Modena (Threshing Machine) Lorenzo R. Riva, Modena (Threshing Machine E. Rohan, Castleconnel, Co. Larmerick (Lough, Wilts (SingleRolling Stock) ; J. Rolt, Marlborough, Wilts (Singletor) ; J. Salietti, Pastells, Barcelona (Planing Machine); tor) ischroter, Springs, S. Africa (Concrete Mixer); G. Schulz, Coromby, Australia (Victorian Railways Locomotive) ; H. Shorten, Regina (righ Wan Monoplane) ; A. Singh, Lahore (Hammernead Crane and Electric Fan) ; L. Smee, Watford (Eight-Wneeled Steam Wagon) ; W. Smith, Luton, Beds. (Ommile ham, Kent (Military Tank) ; J. Taylor, Guildford (S.R.4-4-0 Locomotive) ; T.' Tenuti, Trento, Italy Thijsfen, Maastricht (Electric Locomotive and Rolling Stock) ; C. Tipton, Shrewsbury (Petrol Tank Lorry) Loading Plant) ; K. Vickery, Canterbury, N.Z (Shingle Screener) ; C. Vineall, London, E. 14 (Letter press Printing Machine) ; A. Wahid, Mysore (String Telegraph) ; R. Wallace, Melbourne (Ship Coaling Plant) ; J. Watson, Regina (Trenching Machine) ;
H. Webb, London, N. 22 (Revolving Hammerhead Crane, Air Liner and other Models) ; R. Whitney, L. Wilcock, Sheffield (Breakdown Crane); L. Wilkinson, Regina (Radial Travelling Crane) ; H. Wilmot Port Elizabeth (Steam Wagon) ; W. Wilson, Kenilworth (Four-Seater Motor Car); P. Woodman,

The following competitors in Section

 "B" each receive a Certificate of MeritF. Agosti, Milan ; R. Anderson, Ashfield, N.S.W. ; J. Arbitre, Rouen ; S. Bentley, Low Spennymoor, Co.
Durham; G. Bersani, Rome ; H. Bertreux, Nantes ; C. Britten, Kings Lynn ; M. Brockhurst, Hove Sussex ; F. Drane, Sudbury, Suffolk; G. Emery,
Hall Green, Birmingham; H. Freeman, Southsea; Hall Green, Birmingham; H. Freeman, Southsea ; A. Gardiner, Devizes; R. Gerin, Vienne, Isère, France;
$\mathrm{E} . \quad$ Holm,
Hellerup,
Denmark ; K. Holmstrom, Kalmar, Sweden ; M. Hoozemous, Vlaardingen,
Holland : H. Hugil, Bootle: W. Kilburn, Dewsbury Holland; H. Hugill, Bootle; W. Kilburn, Dewsbury; G. v. d. Linden, Hilversum; Roger Marquier, Toulouse;
H. McMillan ${ }^{\text {Baschurch, Shropshire ; R. Message, }}$, H. McMillan,
Dartford; E. Dartford ; E. Michel, Bormes, Var., Belgium; E
Parker, St. Leonards-on-Sea; A. Pol, Apeldoorn Holland; F, Semeria, Savona, Italy; A. Tearall, Edgware; J. Thompson, Blenheim; R. Turner, Subiaco, W. Australia ; H. B. Tweedy, Stroud ; Jaime
Villa, Barcelona ; H. West, Purley, Surrey ; Ubaldo Zenoglio, Genoa.

SECTION "C"

(Competitors over 12 and under 16) Five First Prizes of Cheques for $£ 4.4 s$. Ingram, Kenneth W., Highwood, N
(A.E.C. Six-Wheeler Motor Lorry). Robert, André, Johannesburg (Fire Escape)
Tanner, Kenneth, Johannesburg (Book-maker's Sewing Machine).
Thompson, J. D., London, N. 11 (Gipsy Caravan).
Vanderlinden, E., Antwerp (Antwerp Cathedral).
Five Second Prizes of Cheques for £3.3s.
Akrell, Carl, Stockholm (Automatic Dredging and Gravel Sorting Machine).
Lane, R., West Croydon, Surrey (Floating Crane).
Medd, David L., Hazelhead, Aberdeen (Jib Crane) Rainforth, Tom, Palmerston North, N.Z. (Mower)
White, Victor, London, W. 3 (Motor Cycle Van).
15 Third Prizes of Cheques for £1.1s. Bartalena, Guido, Pisa (Military Tank).
Dodds, George E., Stratford, Ontario (Locomotive). Grubb, Eric, Vancouver, B.C. (Electric Locomotive) Hâche, René, Paris (Dragline).
Harling, D. W., St. Albans (Racing Car).
d'Humières, Géraud, Versailles (Monoplane Air-Liner) Johannsen, Hans Herbert, Varel, Germany (Tractor) Kietzman, Vincent G., Johannesburg (Racing Car) King, S. D., Palm Bay, Margate (Motor Omnibus). Malefijt, T. H. de Waal, Arnhem, Holland (Coupè) Robson, Thomas, Scarborough (Steam Trawler)
Roden, H., Kilmacolm (Passenger Liner).
Sorbye, Hakon, Oslo (Hammerhead Crane).
Wells, Kenneth N., Newport, I.O.W. (Machine for making Wood-and-Wire Fencing).
Whittet, Martin M., Glasgow, W. 3 (Ship Dredger)
Meccano and Hornby Train goods to a total value of $£ 40$ divided among the following competitors
W. Abery, Durban (Aircraft Carrier) ; F. d'Almeida e Castro, Lisbon (Seaplane) ; P. Andersin, Helsingfors ("Rocket" Locomotive) ; R. Anderson, Rangoon, Burma (Breakdown Crane) ; R. Armstrong, Twicken ham (Designing Machine) ; G. Athey, Hull (Locomotive Coaling Plant); G. Atkinson, Port Elizabeth (Saloon Motor Car) ; J. Barber-Starkey, V Victoria, B.C.
(Mechanical Dredger mounted on Motor Truck) ; W. (Mechanical Dredger mounted on Motor Truck) ; Car) ; Barber, Hornchurch, Essex (Saloon Motor Car);
A. Blanck, Sarreguemines (Aeroplane) ; W. Blunden, A. Blanck, Sarreguemines (Aeroplane); W. Blunden,
Sydney, N.S.W (Motor Car Chassis); R. Boddey, Ipswich (Travelling Jib Crane) ; A. Boeke, Baarn, J. Bowers, Hill Top, Wilmslow (Motor Omnibus) ; J. Bowers, Hill Top, Wilmslow (Motor Omnibus) R. Buhler, Zurich (Aeroplane); A. Bury, Liége (In-
clined Railway); R. Chauvin, Vitrê, France (Aeroclined Railway); R. Chauvin, Vitre, France (AeroElwood, S.3, Victoria (Destroyer); J. Comper, London, S.W.8 (Paper Cutting Machine); G. Cory, Notgrove, Nr. Cheltenham (Hay Stacker); P. Critchley (Electric Locomotive) ; André Denel, Lille (Grabbing Crane) ; H. Denholm, Hobart (Crane) ; G. Doughi, Venice (Scenic Railway); Miss Muriel Franklin, Venice (Scenic Railway) : Miss Muriel Franklin, Blackpool (Aeroplane) ; W. Gassmann, Zürich (Electric Locomotive fitted with Pantograph Current Collectors); Gibout, Paris (Crane) ; B. Ginders, Wellington, N. Z (Bacon Slicing Machine) ; J. Girardeau, Thouar (Field Gun and Limber) ; W. Girogi-Alberti, Spoleto (Telpher and Girder Bridge) ; E. Goffin, Brussels (Aeroplane) ; R. Goffin, Roubaix (Military Tank and Motor Tractor): W. Griffith, Durban (High Wing Monoplane) ; H. Groendijk and F. de Beer (joint entry), Ternaard, Holland (Dutch Windmill); R. Guillorit, Nantes (Models of a House and Ship) ; D
Gysen, Brussels (Motor Chassis) ; E.Hallam, Johannes Gysen, Brussels (Motor Chassis) ; E. Hallam, Johannes burg (Self-propelled Floating Crane); H. Hart
London, W. 12 (Leyland Removing Van); G. Hawkins Remuera, Auckland, N.Z. (Road Motor Power Grader) B. Heath-Brown, Farnham, Surrey (Block-setting Crane) ; G.v. d. Helm, Hilversum (Trolley Omnibus) E. Hewines, Stafford (Electric Crane) ; B. Hill, Durd ham Down, Bristol (Jib Crane) ; A. Hull, New Milton Hants. (Aeroplane) ; W. Hunt, London, W. 5 (Steam driven Model Workshop) ; A. Hurden, London, N. 1 (Refuse Collecting Motor Lorry) ; J. Isaksen, Osio Portable Luggage Escalator) ; W. Jones, Christchurch, N.Z. (Aeroplane); K. Kharé, Poona (Automatic Scenic Railway) ;'P. Kilpin, Kenilworth, S. Africa (Floating Crane); R. Kratzenberger, Berlin, N.W. 87 (Cement Mixer) ; R. Larnic, Paris (Rock Breaker) A. Leonard, London, S.E. 3 (Six-Wheeled Omnibus); T. Lewis, Johannesburg (Breakdown Crane) ; P Lillywhite, Farnham, Surrey (Motor Lorry) ; L Lynne, Littledean, Glos. (Motor Fire-Engine and Escape) ; M. Lyzet, Caudéran, Gironde (Mechanical Washing Machine) ; W. McKay, Wishaw (Portable Steam Crane, driven by Meccano Steam Engine) E. Matter, Ermatingen, Thurgan (Locomotive and Tender); P. Mead, London, E. 18 (Coke Grading Machine) ; J. Merson, Stockton-on-Tees (Cruiser) J. Michel, Annecy, Haute-Savoie (Travelling Crane) D. Moyle, Johannesburg (Racing Car) ; R. Nicholas,
Islington, Ontario (Bird Cage and Stand); S. Noall, Islington, Ontario (Bird Cage and Stand) ; S. Noall,
Avondale, Auckland, N.Z. (American Locomotive) Avondale, Auckland, N.Z. (American Locomotive)
P. Opprecht, Schaffhausen (Motor Lorry) ; K. Orams, P. Opprecht, Schatthausen (Motor Lorry) ; K. Orams Blenheim, N.Z. (Tractor with Plough) ; F. Pamicke,
Heilingenstadt, Germany (Military Tank); L. Paris,

Orleans (Bugatti Sports Motor Car); D. Parker, Stafford ("Sentinel" Steam Wagon) ; M. Pasquie, Castelsarrasin, France (Cable-laying Machine) ; J.
Petitjean, Paris (Sewing Machine) ; J. Read, JohannesPetitjean, Paris (Sewing Machine) ; J. Read, Johannes-
burg (Omnibus) ; K. Reeves, Johannesburg (Motor burg (Omnibus) ; K. Reeves, Johannesbarg (Motor
Wagon for carrying Sugar Cane); A. Régis, Alger, Algiers (Grabbing Crane mounted on overhead gantry); P. Renbjor, Levanger, Norway (Crane, Steam Engine, Motor Car, and other models) ; Seivrta Rosario, Palermo (Revolver); G. Sabajno, Milan (Two-Seater Motor Car) ; E. Salmon, Retford, Notts. (Signal Cabin); H. Sandoz, St. Imier, Switzerland (Aeroplane Ex-
cavator) ; P. Senft, Barr, France (Aeroplane and cavator) ; P. Senft, Barr, France (Aeroplane and
Long Range Gun); R. Shepherd, Weymouth (Safe Long Range Gun) ; R. Shepherd, Weymouth (Safe
with Combination Lock) ; K. Siddon, Woodbridge, with Combination Lock) ; K. Siddon, Woodbridge, Slovet, Figueras, Spain (Calculating Machine)
Souccer, Alexandria (Steam Excavator, Telephone and Electric Fan) ; A. Storer, Ilford (Eight-wheeled Tram Car) ; J. Street, Sydney, N.S.W. (Seaplane and Ocean Locomotive) ; G. Twyman, Canterbury (Motor Lotry, Ship and other Models); F. Ugalde, Buenos Aires
(Agricultural Machinery) ; D. Wade, Melbourne Agricultural Machinery) ; D. Wade, Melbourne
(Saw Mill) ; D. Weller, Hampton Wick (Trolley Omnibus) ; H. Whitehouse, Kings Heath, Birmingham (Derrick Crane) ; P. Williams, Johannesburg (Jib Crane) ; R. Williams, London,
Omnibus) ; W.W. 20 (Trolley
(Roundabout and other models) ; J. Wingsheim, Frenchen, near Cologne other models) ; J. Wingsheim, Frenchen, near Cologne
(Convertible Trenching Machine) ; H. Wirth, Untersee, Bern (Electric Locomotive) ; P. Worfolk, Caterham Valley, Surrey (Sports Motor Chassis) i P. Yates,
Johannesburg (Tractor); B. Yonge and J. Hooper. (joint entry), Sydney, N.S.W. (Dockside Crane).

The following competitors in Section "C" each receive a Certificate of Merit

 J. Aitken, Haddington; N. Allard, Coventry ; R. Angus, Plymouth; L. Aschan, Helsingfors E. Bednall, Littleover, Nr. Derby; J. Bell, Bootle K. Best, Leeds ; J. Beule, St. Pierre, France ; J.Bevan, Neath ; M. Biggs, Christchurch, N.Z. ; C. Bills, Blackpool ; J. Blanarsch, Strasbourg; Raffaele de Blasi, Palermo; J. Bolibar, Barcelona; R. Boom,
Hengelo-Overijssel; H. Bowley, Edmonton; R. Hengelo-Overijssel; H. Bowley, Edmonton; R.
Brangwin, London, N. $; ~ E . ~ B r a u s s i, ~ P e s a r o ; ~$ R. Brenni, Mendrisio, Ticino, Switzerland;
T. Brook, Rossburgh, Natal; R. Bruce, Shipley; A. Brook, Rossburgh, Natal; R. Bruce, Shipley; Utrecht; G. Bunker, Grimsby; C. Burns, Edinburgh; W. Cain, Watford; A. Campbell, Exmouth ; I. Camp-
bell, Milngavie, Glasgow ; E. Chagoury, Cairo ; P. bell, Milngavie, Glasgow; E. Chagoury, Cairo; P. Chappell, London, W. 13 ; J. Charot, Fontenay-leStrabane, Co. Tyrone; K. Colencrander, Breukelen; F. Collins, Whalley Range, Manchester; W. Commer, F. Crighton Bayly, Kilmacolm; J. Cullen, London, F. Crighton Bayly, Kilmacolm; J. Cullen, London,
E.6; D. Dadd, Moss Vale, N.S.W.; G. Dean, NewE. 6 ; D. Dadd, Moss Vale, N.S.W.; G. Dean, NewDebrill, Lille; L. Defries, Streatham, London; Devie, Lyons; J. Doyle, Melbourne ; H. Eikermann, Mulheim a/d Ruhr, Germany; S. Ekman, Kneippbaden, Sweden; J. Etches, New Westminster, B.C.;
R. Ewan, Cheriton Bishop, Exeter; R. Exley, R. Ewan, Cheriton Bishop, Exeter; R. Exley, E. Firth, Sandbach, Cheshire ; A. Ford, Wokingham Jean Francois, Sedan, France ; J. Gentle, Coatbridge Good, Liverpool ; R. Gould, Mapledurham, ' Nr Reading; A. Greaves, Skegness; C. Greener, Maghull, Nr. Liverpool; R. Manen Grenier, Barcelona; C
Grunfeld, Geneva; H. Haas, Leiden: G. Halsema, Ermelo, Holland; D. Hannah, Grinshill, Nr. Wem, Salop; W. Hart, London, N.1; J. Hay, Knutsford
C. Hilton, Hollins, Oldham: H. Holton, Ootacamund S. India; B. Hooke, Blackburn, Victoria ; N. Hooke, Blackburn, Australia; D. Horrocks, Leigh; G.
Howard, Watford; R. Hubert, Guernsey ; L. Hugers, Nijmegen; C. Humn, Geraldine, N.Z. V. Jackson, Wellingborough; R. James, Sharrow, Sheffield; F. Jonas, Greifswald, Germany ; K. Keays, Cape
Town; J. Kennedy, London, W.1; C. Kerr, Langside, Glasgow; F. Kick, Zürich; R. Kidman, London, N. 6 H. Läng, Zürich; E. Larsen, Copenhagen; A. K. Lewis, St. John's, Newfoundland; A. Lichenstein, Danielskuil, Cape Province; A. Lischetti, Villa Constitucian, Argentina; R. Long, Mexico City ;
J. Lovett-Turner, Blockley, Glos. ; A. Lowe, Lenton, J. Lovett-Turner, Blockley, Glos. ; A. Lowe, Lenton,
Nottingham ; W. Lubberstedt, Herisau; M. McDonald, Ranelagh, Dublin ; H. McDowell, Lurgan; A. McGregor, Wallsend ; G. McGregor, London, S.W. 20
K. MacKenzie, Belfast; D. Malin, Mickleover, Nr K. Mackenzie, Belfast; D. Malin, Mickleover, Nr.
Derby ; H. Mantle, Kimberley ; J. Mapplebeck Derby; H. Mantle, Kimberley ; J. Mapplebeck,
Huddersfield; A. Marlow, Kroonstad, O.F.S.; L. Massey, Poznan, Poland; H. Mattheyer Zeist, Utrecht; G. Merrett, London, W.1; T. Miller, Netherlee,
Glasgow; P. Milton, Beckenham; W. Muller, Dunkeld, Glasgow ; P. Milton, Beckenham ; W. Muller, Dunkeld,
Johannesburg ; R. Neave, Norwich ; L. Neven, Limburg, Belgium; S. Norden, Sydney, N.S.W. ; A. Nunn, Exmouth; E. Paasche, Bergen ; N. Pairman, New-castle-on-Tyne ; Giovanni Papa, Naples ; L. Paris, Orleans; J. Payne, Hull ; H. Pell, Hamilton, Ontario;
I. Pickles, Bradford; H. Piet, Wormer, Holland;
Pippard, Clifton, Bristol ; F., Pollman, Steinheim J. Pippard, Clifton, Bristol ; F. Pollman, Steinheim B. Ramboult, Sallris, France; A. Reid, Edinburgh W. Reeve, Hobart ; P. Robson, Cardiff; H. Roths-
child, Zürich ; J. Sanders, Tilburg, Holland; G.

Scales, Scarborough ; N. Smee, Bartonville, Ontario; A. Smith, Braintree; G. Somerwill, Southampton;
W. Sommer, Geneva; O. Sörensen, Drammen; P. Suarth, Clevedon, Som. ; E. Tait, Durban ; J. Taylor, Chapel-en-le-Frith, Derbys.; F. Teggin, East London O. Thomas, Cowbridge, Glam. ; D. Thorburn, Nobleford, Alberta; F. Thornton, Scarborough ; F. Tous-
berg, Oslo; E. Treharne, Port Talbot; F. Troelstrup, Copenhagen ; M. Tweedie, Tilehurst, Berks. ; R. Vre] Orleans; J. Waller, London, N.7; H. Ward, Tong
Branch, Ontario; E. Wareham, Kings Norton, Branch, Ontario ; E. Wareham, Kings Norton,
Birmingham; A. Weiler, Luxemburg; J. Westhead, Stockport; P. Whale, London, S.W. 16 ; J. Whittle,
Wigan; J. Whyte, Toronto ; D. Wilde, Rhos-on-Sea; Wigan ; J. Whyte, Toronto ; D. Wilde, Rhos-on-Sea;
N. Wright, Melton Mowbray ; R. Wright, St. Albans.

SECTION "D"

(Competitors over 10 and under 12)

 Five First Prizes of Cheques for $£ 3.3 \mathrm{~s}$. Beard, W. C., Johannesburg (Gold Mine Headgear)Canepa, Emilio, Genoa (Grain Crushing Machine). Canepa, Emilio, Genoa (Grain Crushing Machine Kellett, Wilfred, Bradford (Milling Machine). Rickett, John W., Takeley (Self-Binder Harvester)
Sharpe, Clifford P., Ilford (Household Gas-Cooker).
Five Second Prizes of Cheques for $£ 2.2$ s.
Bayona, Jaimè, Barcelona (Motor-Cycle Delivery Van).
Cescatti, Adolf, Zurich (Windmill Pumping Plant). Cescatti, Adolf, Zurich (Windmill Pumping Plant) Fraser, B. R., Farnham Common, Bucks, (Jib Crane).
Hough, Ronald, Wallington, Surrey (Coke Oven Ram). Hough, Ronald, Wallington, Surrey (Coke Oven Ram)
Rossi, Allessandro, Schio, Italy (Toboggan Railway).
15 Third Prizes of Cheques for 10 s. 6 d . Brouwer, J., Rotterdam (Double Lifting Bridge). Carrasco, R. Marsal, Denia (Loom and Locomotive), Chambure, H., Paris (Front Wheel
François, B., Cherbourg (Omnibus).
Hall, I., Louth (Swivelling Jib Crane)
Hole, Frederick W., Taunton (Trolley Omnibus) Lambert, G., Nottingham (Grandfather Clock). Lizer, G., Retford (Grandfather Clock).
Rose, P., Pinetown, Natal (Motor Puman)
Schell-Gossow, L., Bandoeng, Dutch East Indies (Three-Wheel Native Motor Carriage)
Slosse, René, Hoboken, Antwerp (Wind Motor) Waldvogel, F., Brennen, Switzerland (Machine for Carrying Paper in Bulk).
Wegel, P Le Havre (Steai
Wegel, P., Le Havre (Steam Driven Lathe)
Yves, P., Nantes (Crane)
Zuyben, R. v., Liége ("Silver Bullet" Racing Car).
Meccano and Hornby Train goods to a
total value of $£ 30$ divided among the following competitors
G. Allen, Croydon (Crane) ; Jorge Anglada, Barcelona (Crane) G . Armstrong, Carlisle (Twin-Wheel
Drive Motor Lorry and Trailer); L. Balasch y AllenDrive Motor Lorry and Trailer) ; L. Balasch y AllenCh. Inf. (Motor Car); R. Barr, Hamilton, Ontario (Suspension Bridge) ; M. Barua, Shillong, Assam (Fortune-Telling Machine) ; J. Beck, Raveningham, Norwich (Portable Log Saw); M. Beddeleem, Wetteren, Belgium (Fire Engine) ; P. de Bellefeuille, Ottawa Ralway Crane); P. Calnster, Wairarpa, N.Z. (Racing B. Chaix, Geneva (Motor Car); V. Chatillon, Lyons (Signal Gantry) ; L. Charles, Kalagate, O.F.S. (Wayside Station) ; R. Clausse, Avallon, Yonne (Railway Points) ; G. Cowen, Kitale, Kenya Colony (Motor Car); I. Crotin, Paris (Saloon Motor Car) ; E. Dean, Back Luxembourg (Water Pumping Plant); J. Degoy, Petit Quévilly, Siene-Inferieure (Lifting Jack) ; J.
Dony, Clermont-Ferrand (Aeroplane) ; M. Dumont, Liancourt (Heavy Motor Lorry for Carrying Logs) ; R. Eicher, Luxembourg (Motor Car) ; C. Evans, Hale,
Nr. Altrincham (Double-Deck Omnibus) ; N. Ewing, Durban (Floating Crane): D. Fanquet, Bayonne Air Liner); M. Fels, St. Nikolaas, Belgium (Trans porter Bridge) ; D. Franklin, Victoria, B.C. (Block Crane, Mine Shaft and Cage) ; R. Freshwater, Reigate (Military Biplane) ; K. Froome, Windsor (Passenger Liner) ; J. Fry, Sydney (Level-Luffing Crane) ; W O. Goff, Dublin (Monoplane) ; T. Gorbenko, London, W.5. (Passenger Liner); B. Green, Salisbury, S Rhodesia (Crane) ; R. Griffiths, Mossley Hill, Liverpool (Crane and Transporter) ; H. D. Hardt, Saarbrucken 11, Germany (Typewriter) ; R. Harrington, Umtali, S. Rhodesia (Six-Wheeled Motor Lorry); C. Haw,
Heworth, York (Wireless Detecting Van); W. Hill, Heworth, York (Wireless Detecting Van); W. Hill, Benton, Northumberland (Motor Chassis) ; J. Hodin,
Paris (Automatic Ticket Distributor) ; J. M. Horrox York (Trolley Omnibus); D. Howes, Birmingham (Tank Locomotive); G. Hutchinson, Abergele "Toast Rack". Street Car) ; D. Jackson, Leeds
(Aeroplane); K. James, Balclutha, Otago, N.Z. Aeroplane) ; K. James, Balclutha, Otago, N.Z.
Motor Breakdown Crane) ; B. Johnson, Bridlington Aeroplane); R. Keay, Richmond (Hammerhead Crane) ; R. Lancon, Marseilles (Pile Driver); R. Landsmann, Giersdorf i Rsgb., Germany (Elevator) ; C. Latham, Bristol (Fire Engine) ; A. le Claire, Worksop
(Train Ferry) ; B. Lensvelt, Isle of Walcheren (Lighthouse) ; J. Lock, Dorrington, Nr. Shrewsbury (Hydraulic Crane) ; R. McCall, Cork (Sports Motor
Car) ; P. MacDonald, Coe Hill, Ontario (Railway Car) i P. MacDonald, Coe Hill, Ontario (Railway
Breakdown Crane) ; A. Macleod, Clevedon, Som. Pneumatic Drill) ; P. Mailliard, Paris (Turbinepropelled Speed Boat) ; R. Maltha, Rotterdam (Cargo D. Mitchell, Grenada, British West Indies (Rifle, Racing

Car and Locomotive) ; P. Moir, Walmer, S. Africa (Motor Car and Traction Engine); G. Monro, London, W. 2 (Pile Driver); E. Moreau, Neuville-aux-Bois,
Loiret (Helical Wire Saw, driven by Electric Motor); Loiret (Helical Wire Saw, driven by Electric Motor);
B. Mulot, Honfleur (Telpher) ; E. Nannestad, Ringe, B. Mulot, Honfleur (Telpher) ; E. Nannestad, Ringe,
Denmark (Motor Lorry and Trailer) ; J. Oudy, Orléans (Transporter Bridge) ; C. Pareja, Brussels (DO.X Flying Boat) ; J. Pearce, London, N. 7 (Motor Lorry) ; L. Petit, Vienne, Isère (Workshop) ; L.
Peyrol,
Gardanne, Bouches-du-Rhóne (Calcining Peyrol, Gardanne, Bouches-du-Rhone (Calcining
Plant); Y. Peyrol, Gardanne, Bouches-du-Rhône Plant) ; Y. Peyrol, Gardanne, Bouches-du-Rhone N.Z. (Baby 'Carriage) ; B. Piet, Wormer (Belt Elevator); E, Ramoger, Calais (Three-Masted Sailing Ship): G. B. Riley, New Brighton (Kitchen Cooking Range) ; J. Salvetat, St. Amans-Soult, France (Tractor D. Savage, Vancouver, B.C. (Clock) ; H. Schmia, Thurgau, Switzerland (Rail-making Machine) ; D. Thurgau, Switzerland (Ral-making Machine); Dondon, N.W.6 (Mechanical Butter Churn) ; H. Sevenich, Cologne (Electric Washing Machine) ; W. Sharrard, Lincoln (Electric " Mule" as used on the Panama Canal) : D. Simpson, Edinburgh (Girder Crane) ; H. Smith, Bickley (Dragline) ; E. Solomon, Balkuling, W. Australia (Paddle Steamer) ; W. G. Spindler, Mulhouse (Heavy Motor Van); A. Thomson, Faversham (Military Lorry fitted with Thomson, Faversham (Military Lorry fitted with Searchlight and Anti-Aircraft Gun); G. Thomson,
Pinner (Long Range Monoplane); C. Tomblin, Pinner (Long Range Monoplane) ; C. Tomblin,
Johannesburg (G.P.O. Mail Van); L. Trepp, OsnaJohannesburg (G.P.O. Mail Van) © L. Trepp, Osna-(Pit-head Gear) ; H. v. der Veen, Amsterdam (Draw-(Pit-head Gear); H. v, der Veen, Amsterdam (Draw-
bridge); P. Vine, Ewell, Surrey (Traction Engine); A. Vink, Den Haag (Tower Jib Crane); B. Waitt, A. Vink, Den Haag (Tower Jib Crane) ; B. Wait, Southend-on-Sea (Steam Tug-Boat) ; J. de Walsche,
Roubaix (Petrol Tank Motor Lorry) ; C. Wilmet, Roubaix (Petrol Tank Motor Lorry) ; C. Wilmet,
Arlon, Belgium (Metronome); A. Wonters, Malines (Airship) ; B. Woodward, Grafton, N.S.W. (Motor (Airship) ; B. Woodward, Grafton, N.S.W
The following competitors in Section " D " each receive a Certificate of Merit I. Balhan, Den Haag; R. Brodersen, Charlotten lund, Denmark; R. v. d. Bruele, Oulst; G. Bruteau, Lyons: A. Chesneau, Rouen; P. Chevillard, Angers C. Chown, Slough; Bruno Cingano, Brescia; J. Collignon, Paris ; L. Cottini, Montepulciano, Tozcana ; R. Curpin, Sancerre ; K. Duncan, Norsewood, N.Z. ;
J. Gachassin, Saint Henry, France; G. Giorgi-Alberti, Spoleto, Italy; O. Godaux, Morlanwelz; A. Gorsse, Cordes, France ; B. Guttridge, Bournemouth; P. Hasseriis, Vejen, Denmark ; J. Hernandez Roig,
Barcelona; K. P. Kharé, Poona ; I. de Laroche, Paris; Barcelona ; K. P. Kharé, Poona ; J. de Laroche, Paris;
J. Lawson, Levenshulme, Manchester ; A. Manganelli, Senigallia; T. Marshall, Bala; F. v. Meenen, Bruges; Sengallia; T. Marshall, Bala ; F, v. Meenen, Bruges ;
H. Merryweather, Sangudo, Alta. ; P. Mertz, Useldingen, Luxembourg; H. S. Moody, Bowmanville, Cadiz; J. Oudar, Calais; A. Ricci, Perugia ; B. Rivron, Ipswich; N. Rubin, Stockholm; W. Ryder, Newcastle, Natal; G. Sammicheli, Intra; J. Schoos, Beverwijk, Holland; O. Strom, Eksjo, Sweden,
A. Sutton, London, S.W. $20 ;$ C. Tatti, Torino; E. A. Sutton, London, S. W. True, Leicester; E. Ulli, Huttwil, Bern, Switzerland; J. Varier, Trilport, France; J. Vatinel, Colombes; M. Vollenweider, Horgen; R. Walford, Newton Abbot; T. Walker, Ohura, N.Z. ; R. Waller, Zug ; D. Westall, Chesterfield; W. Wardroper, Vancouver, B.C.
R. Alby, Castlemandary, Aude; R. Allen, Malvern
Wells: Y. Andrillon, Saintes, Charente Wells: Y. Andrillon, Saintes, Charente Inf.; R. Aubert, Paris; R. Aufrère, Milan; R. Auriau, Savigny-sur-Braye: A. Austin, Auckland, N.Z. J. Barguenden, Paris; D. Benn, Springs, Transvaal; D. Berkin, Kuling, China; J. Berrett, Westbury Wilts. ; Miss M. Bertrand, Ciney ; M. Billiet, Madeleine, Nord; B. Bond, Toronto, Ontario ; A. Brearley, Sowerby Bridge : A. Broadhead, Firth Park, Sheffield, E. Bromfield, Johannesburg; L. Bunn, Devizes; R. Carrer, Venice, M. Chaplin, London, N.S; J. Chomley, Marandellas, S. Rhodesia; L. Clark, Day brook, Notts. ; R. Coinaud, Limoges, Hte. Vienne; P. Condamin, Aniche, Nord; I. Drean, Asnières; P Duboisset, Marseille; J. Duvaché, Arcachon, Gironde, France ; 1. Ellefsen, Plumstead ; C. Erize, Alger, Algiers ; T. Eyre, Warrington ; T. Farnworth, London, E. 4 ; C. Fielding, Longsight, Manchester; R. Fortems, Genappe, Belgium ; A. Frankland, Ravenstonedal Westmorland ; D. Frearson, London, E. 11 ; G Galimand, Aisne; G. Gera, Sliema, Malta; G. Gevraux
Paris ; B. Gravely, Wellingborough ; J. Guillemart, Paris; B. Gravely, Wellingborough; J. Guillemart,
Epernay, Marne; T. Hardie. Troon, Avrshire; C. Epernay, Marne ; T. Hardie, Troon, Ayrshire; C,
Haw, Heworth, Yorks. T. Hedgcock, East Rand, Transvaal ; V. Hendrickes, Louvain; F. Hill Washington Station, Co. Durham: J. Houghton, Cheltenham; R. Huddy, Watford; H. Hughes, Criccieth; J. Huyter, Utrecht: C. Jouannaud, La Madeleine, Nord; A. Kelly, Ryton-on-Tyne: D. Kerswell, Chillington, Kingsbridge, Devon; P. H
Klussmann, Hallbrook, Hamburg; C. Kuchly, Klussmann, Hallbrook, Hamburg; C. Kuchly;
Sarrebourg, Moselle ; B. Kuipers, London, N. 10 ; Sarrebourg, Moselle ; B. Kuipers, London, N.10;
J. Larpent, Le Havre; J. Lead, Harrow ; E. Lubche, Berlin; A. Mahon, Bickley; C. V. Maldeghem, Brussels; F. Merienne, Paris; G. Merolle, Paris W. Meyer, Weinfelden, Thurgau; P. Michaillard, Delle, Belfort; D. Miller, Auckland, N.Z.; G. Mirams,
Moseley, Birmingham; W. Muller, Ostfriesland; N. E. Nerell, Stockholm; P. Northcote, Leominster H. Ornal, Paris ; J. Pasquier, Compiegne, Oise, France K. Payne, Shucknall, Nr. Hereford; A. Pippard,
Clifton, Bristol ; M. Prévot, Feignies, Nord ; J. Protics,

Pressburg, Bratislava, Czechoslovakia; J. Rasselet Aisne; R. Revol, Puy de Dôme, Clermont-Farrand J. Ribra, Barcelona, R. Rider, London, S.W. 10 J. Rigal, Houilles, Seine-et-Oise ; K. Ripley, Hudders theld; G. Rivière, Pellegrue, Gironde; W. Rüegger Lotzwill, Bern, Switzerland ; H. Schaffer, Göttingen .. Schulze, Lydenburg; G. Seigrist, Dossenheim-sur Zinsel, Saverne ; L. Slijkoord, Utrecht ; J. Smith Roxburgh; M. Sordel, Aubepierre, Hte. Marne H. Spanswick, London, S.E.12; J. Stocker, Christ church, N.Z.; G. Tait, Christchurch, N.Z. ; Miss Dorothy Thorne, Chesham; M. Thorn, Ottery-St. Huddersfield ; J. Walton, Penwortham Hill, Preston R. Walton. Ryde, Isle-of-Wight; H. v. Witsen, Mentone, Garavan, Alpes Maritimes ; G. Wuilmot, Hans-sur-Sombre, Namur; G. Yorke, Pretoria.

SECTION "E"

(Competitors under 10 on 31st Mar., 1932)

Five First Prizes of Cheques for $£ 2.2 s$.
Baldwin, P. L., Sacombebury, Nr. Ware (Mower), Bryant, M. H., Skipton (Locomotive and Tender), Clairèt, G., St. Ouen, France (Suspension Bridge). Le Claire, P. B., Worksop (Rowing Boat and Crew).
Plewman, R. P., Sunnyside, Pretoria (Ox Wagon).

Five Second Prizes of Cheques for £1.1s.

Chew, A., Wilmslow, Manchester (Drawbridge)
Fairfield, P., Bowdon, Cheshire (Tractor-Trailer).
Karl, W., Skargvhagen, Oslo (Crane and Tower) Molle, Jacques, Brussels (Device for recording the expansion of Metal when heated).
Robert, André, Orgères-en-Beauce, France (Swing
Boats) Boats)
15 Third Prizes of Cheques for 10s. 6 d . Appleby, J., Bridlington ("Shamrock" High-Flyers). Bolleter, Albert, Zürich, Switzerland (Crane). Brown, R., Ngaruawakia, N.Z. (Portable Hay Stacker). Dauncy, R. M., Redditch (Observation Tower). Dulieu, B. L., Canterbury, N.Z. (Steam Trawler). Hendricks, D., Quetta (Oil Well Derrick).
Jepson, D., Longsight, Manchester (Tank Locomotive) King, Ian, Berbice, British Guiana (Tractor). Lindahl, Anders, Karlshamn, Sweden (Motor Truck) Niven, S., Dundee (Dredger).
Passmore, D., Torquay (Saltash Bridge).
Picou, Claude, St. Denis, France (Electric Crane). Quiroz, J. M., Colonia del Valle, Mexico (Wind Motor) Rawling, D,, Openshaw, Manchester (Crane), Tangeras, Jean, Vertheuil-en-Medoc, Gironde, France (Garage complete with Motor Cars).

Meccano and Hornby Train goods to a

 total value of $£ 2 O$ divided among the following competitorsP. Ashlin, Weston-super-Mare (Cargo Boat) $; ~$ Bailey, Edgware (Travelling Crane); P. Banks, Firth Park, Sheffield (Simple Cinematograph); 1lo Barbensi, Livorno, Toscana (Air Liner) ; R. Bel, Paris (Motor Bus) ; G. Bennett, Warlingham, Surrey (Windmil operated by a Coin-in-the-Slot Mechanism) ;
Bertrand, Ciney, Belgium (Chariot); Miss Amie Beyleveld, Steynsburg, Cape Province (Rock-drilling Machine) ; W. Beyleveld, Steynsburg, Cape Province (Motor Lorry) ; Bruno Bolaffio, Milan (Pile Driver and Motor Car); P. Bonnet, Paris (Field Gun and Limber); R. Bourhill, Gorebridge, Midlothian (Tipping Motor Lorry) ; E. Bramley, Burton-on-Trent (Steamship);
K. Brown, Franksten, Victoria (River Boat) ; D. Butson, Hankow (Iravelling Crane) ; Luigi Camisassi, Saluzzo, Cuneo (Breakdown Cranc, and other Models) I. Carreau, St. Dizier, Hte. Marne (Device for French Knitting) ; G. Castle, London, N. 10 (Traction Engine) B. Catchpole, Altrincham (Household Gas Cooker) R. Cheshire, Pershore (Breakdown Crane for Motor Vehicles) ; M. Cowlin, Attenborougb, Nr. Nottingham (Centrifugal Railway) ; F. Cressier, Lugnorre Vully Switzerland (Potato Reaper); H. Cruickshank Edinburgh (Three-engined Air Liner) : L. Darras, Colombes, Seine (Atlantic Liner) ; R. Daubeny, Newton Valence, Alton, Hants. (". Novelty") Locomotive) ;
J. Davrinche. Arras (Police Patrol Boat) : R. Dehillotte, J. Davrinche, Arras (Police Patrol Boat) ; R. Dehillotte,
Perigueux (Rickshaw and Coolic) ; R. Downs, London, W. 3 (Belt Conveyor) ; P. Dugast, Morbihan (Motor Tank Lorry): D. Duke, Brechin, Angus (Jib Crane) . Edmond, Chelmsford (Floating Crane) : W. Edwards, Risalpur, India (Army Transport Cart) ; J. Ellis, Altrincham (Aeroplane); I. Fabre, Paris (Gantry Crane, and other Models) : D, Fisher, Edgware (Wool Winder) ; J. Foucher, Vendée (Aeroplane) ; R. Gadsby London, E. 7 (Lifting Truck and Goods Platform) H. Giard, St. Germain-en-Laye, Seine-et-Oise (Steam Excavator) ; I. Gillaumin, Orleans (Endless Chain
Elevator) H. Gits, Harderwijk (Crane) ; J. Groslier, Elevator); H. Gits, Harderwijk (Crane); J. Groslier,
Paris (Transporter Bridge) ; R. Hadley, Langley, Paris (Transporter Bridge) ; R. Hadley, Langley,
Birminghan (Fire Escape) ;
R. Hervet, St. Quentin, Birmingham (Fire Escape) ; R. Hervet,
Aisne (Paper Folding Machine); R. Holgate, Fives Lille (Printing Press) : J. Hubert, Pont-sur-Yonne Hydro-Cycle) : A. Husser, Colmar, Hte. Rhin (Moto corry fitted with Searchlight); A. Jenkins, Keswic Aeroplane) ; R. Jones, Acocks Green, Birminghan (High Wing Monoplane) ; J. Joubert, Paris (Printing
Press) ; H. Larsen, Copenhagen (Aeroplane): G. Press) ; H. Larsen, Copenhagen (Aeroplane): G
Laure, Le Perreux, Seine (Transporter Bridge) L. Leare, Le Perreux, Seine (Transporter Bridge) Lefort, Athus, Belgium (Windlass) ; B. Lelievre,

Sotteville les Rouen, Seine Inf. (Transporter Bridge); W. Linton, Kilmarnock (Steamship) ; G. McDougall, Ararat, Victoria (Motor Breakdown Service Wagon); Abilly, Indre-et-Loire (Flower-pot Making Machine) R. Michel, Maromme, Sein Inf. (Motor Bus and Tractor) ; R. Michel, Royan, Chte. Maritime (Pit-Head Tractor) ; R.Michel, Royan, Chte. Maritime (Pit-Head Car) ; H. Neily, Middleton, Nova Scotia (Farm Wagon with Hay Rack) ; I. E. Morris, London, W. 9 (Eight-Wheeled Motor Lorry and a Three-Wheeler Truck) ; E. Oyler, N. Mitcham, Surrey (Salvage Boat); L. Rubio, Pares, Barcelona (Transporter) ; A. Patys, Mons (Army Tank) ; F. Payás, Barcelona (Model of a Bird) ; W. Pegum, Ballylongford, Co. Kerry (Railway Viaduct) ; A. Perroden, Saint Gervais, Orne (Aeroplane); G. Marco Piaggio, Genoa (Racing Seaplane) ; Hawhurst, Kent (Tipping Motor Lorry) ; D. Potter, Hawhurst, Kent (Tipping Motor Lorry) ; D. Potter,
Belfast (Battleship)
P. Prost, Cannes, A. M. France (Slipway for Launching Yachts) ; A. de Ridder, (Escalator): A. Ringrose, Newgate, Limerick (Grinding Mill driven by Water-Wheel) ; H. Ruegger, Zofingen (Omnibus) ; T. Sanders, Knowsley, Lancs. (Cattle Truck) ; K. Schryer, Westboro, Ontario (Trench Digging Machine) ; B. Scott, Belfast (Tank fitted with Crawler Track) ${ }^{(W i n d e r ~ f o r ~ R a d i o ~ C o i l s) ~ ; ~ P . ~ S e l l m a n, ~ G i s b o r n e, ~ N . Z . ~}$
(Welorieux, Faris (Electric (Cars as seen in Paris) ; K. Shrewsbury, Coulsdon, Surrey (Clothes Washing Machine) : Bruno Signorini, Perugia, Italy (Designing Machine); L. Slater, Lytham-St. Annes (Jib Crane and Fire Truck);
E. Smith, Vamaru, N.Z. (Tractor Road Grader); W. Stromeyer, Magdeburg, Germany (Tractor and The Playfui Horse "). Launceston (ichon Namur Model, fitted with Creeper Track); W. Tripmaker, Potsdam (Crane) : J. Turbyne, Dirleton, East Lothian (GrandVersprecuwen, Antwerp (Merry-Go-Round); Antonfrancesco Vicini, Faenza, Ravenna (Motor Lorry); Station) ; J. Vignaud, Valencinnes (Gantry Crane); A. V. Vorde, Aalsmeer, Holland (Printing Machine); Carrots) ; W. Wells, Kenton (Double-deck Omnibus) E. Williams, London, S.W. 19 (Travelling Coffee Stal),

The following competitors in Section

 ' E ' each receive a Certificate of MeritF. Adams, Knapsack, Cologne ; A. Aikman, Shore-ham-by-Sea; E. Aquilina, Misida, Malta; P. Bouliau, Madeleine-lez-Lille, Nord; L. Boureau, Paris; M. Dregier, Le Havre, Seine; N. Bryant, Southampton R. Cuevas, Avilés, Asturias; W. Dann, Bedland, Bristol; F. Demoulin, Avignon, Vaucluse; C. Dunkley, Hants, ; L. Harman, London, S.E.2; D. Hewitt Carnalea, Co. Down; F. Holmes, Nottingham ; D. Hoperaft, Deddington ; Oxon, G. Hopstack, Gelsen Lang, Munich; J. Ledley, Brisbane, Queensland; J Le Roy, Dieppe, Seinne Inf. ; J. Marc, Lyon, Rhốne ; G. Miln, Warrington; M. Montu, Levallois Perret, Seine ; F. Nicosia, Milan; H. Nitzschke, Forst, N/L.
T. Pink, Stromness ; R. Pierrard, Albert, Somme Venice; H, and A 'Sadler, Cologne; R. Savall, Font Pontevedra:H. Schild, Hellenthal, Germany; W Schmidt, Tangerhūtte; J. Scowcroft, Cleveleys,
Blackpool; O. Stadhalter, Odenkirchen; A. Stauffert, Strasbourg, Bas-Rhine ; P. Wright, Reading.

Special Aeroplane Prizes

SECTION C

First Prize (Tie), $£ 5$ divided between two competitors : Geoffrey T. Chapman, Fleetwood (Gotha TwinF.CP. Buenos Aires (Avion Dornier Super-Wal Flying Boat). Second Prize (Tie), £3 divided between two Holland (Fokker " F.V III" Monoplane); Mario Prunas, Cagliari, Italy (Triple-Engined Monoplane). Third Prize, Cheque for £1: Pat Erskine-Tulloch, Oxted (Handley-Page " Clwe" Troop Carrier).

SECTION D

First Prize (Tie), $£ 5$ divided between two competitcrs : B. Rivron, Ipswich (Short " Calcutta " Flying Boat), Vittonio di Sambuy, Rome (Douglas "Dolphin," Models). Second Prize (Tie), $£ 3$ divided between two competitors: Guy Bard, Bastogne, Prov. du Luxembourg (Triple-Engined Low Wing Monoplane) ; John Third Prize, Cheque for £1: Francois de Beauvais, Paris (Autogiro).

First Prize (£5), dividediON E

Fenton (25), divided between three competitors: Castle; M. H. Orde, Chateau d'Oex, Switzerland Second Prize (£3), divided between three competitors :
W. Diggelman. Tossthal, Switzerland. C, Verget Chalon-sur-Saone, France; P. Zveteremich, Ivrea, Italy. Third Prize (£1), divided between two competitors: Goodmayes, Essex

Meccano Twin Anti-Aircraft Guns That may be Trained and Fired Like Real Guns

ONE of the latest forms of warfare is carried out by aeroplanes, and in order to combat this menace many methods of defence and counter-attack have been adopted. Counter-attacking is of course only possible by aeroplanes of equal or greater power than the attacking force, but for defence gun-fire has proved the most universally suitable method, and it is for this purpose that the anti-aircraft gun has been evolved. When gun-fire was first adopted the speed of aeroplanes was comparatively slow, thus enabling relatively slow gun-fire and manœuvring to be effective. As the speed of aircraft increased, however, the speed of operating the guns had to be increased proportionately, until to-day with the latest type of coastal defence guns an amazing rapidity of fire with remarkable accuracy is possible. By mounting two guns on one pedestal the rate of fire has been almost doubled, and in this manner also the possibility of a " hit " has been greatly increased. It is upon this latest pattern of twin mounted antiaircraft guns that the design for the Meccano model has been based, and the result, as will be seen from Fig. 1 in this article, is a very imposing and " true to life " model.

Constructing the Meccano Model

Commence the model by constructing the guns, each of which is built up in the following manner. The barrel (Fig. 3) consists of an $18 \frac{1}{2}{ }^{\prime \prime}$ Angle Girder 1 to which is secured, by means of a $\frac{1_{2}^{\prime \prime}}{2} \times \frac{1_{2}^{\prime \prime}}{}$ Angle Bracket 3, a $12 \frac{1}{2} "^{\prime 2}$ Angle Girder 2. The Angle Bracket 3 is drawn out to the extremity of its slotted hole on one side in order to allow a clear passage for the " shot." The $18 \frac{1}{2}$ " Angle Girder 1 also carries a $2 \frac{1}{2}^{\prime \prime}$ Girder 45 , secured in place at its outer end by two Double Brackets. It will be noticed that the

$1^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ Angle Brackets. The upper portions of these Angle Brackets are kept in permanent contact, by a piece of Spring Cord, with the filed-off end of the upper Rod, shown clearly in Fig. 2.

It will now be seen that on passing a Washer, representing the shell, down the Rod 4, and pulling the handle 11 towards the operator, the two $1^{\prime \prime} \times \frac{1}{2}$ " Angle Brackets are forced downward until their two bent-out ends pass one on each side of the Rod 4 and press against the Washer. If the handle is pulled still farther the Washer is forced down the Rod against the pressure of the Compression Springs until it passes the end of a $\frac{3}{8}{ }^{\prime \prime}$ Bolt 6 , which is raised sufficiently to allow the Washer to pass. The Bolt is secured by an Angle Bracket to the handle 10. When the C o m pression Springs are fully compressed the Bolt 6 is lowered by raising the handle 10 , the handle 11 then being returned to its original position. The Washer is now held only by the Bolt 6, and a slight pressure on the handle 10 is sufficient to release it. A little careful adjustment is necessary in order to allow the Washer free passage down the barrel of the gun, and for this reason the Bolt securing the Angle Bracket 3, and also the $5 \frac{1_{2}^{\prime \prime}}{}$ Strips mentioned earlier, are spaced away from their respective parts of the gun by Washers.
The broad part of the gun is shown clearly in Figs. 2 and 4, and is built up from alternate lengths of $7 \frac{1^{\prime \prime}}{}$ and $6 \frac{1}{2}{ }^{\prime \prime}$ Strips, the latter being composed of one $5 \frac{1}{2}^{\prime \prime}$ and one $2 \frac{1}{2}$ " Strip. Each length of strip is attached to its neighbour by means of two slightly bent Flat Brackets, one of which is placed at each end of the Strip. A gap, the width of one Strip, is left as shown in Fig. 2 and this allows sufficient space for the loading mechanism to be operated. When the mechanism is inserted the gap is bridged by the two $1 \frac{1}{2}^{\prime \prime}$ Strips, one of which is shown at 9 , Fig. 3, and the other in Fig. 2. The casing is attached to the gun barrel by means of a $\frac{3^{\prime \prime}}{4^{\prime \prime}}$ Bolt 15 that passes through a hole in the Girder 1 and is secured in a threaded hole of the Coupling 5 .

The dummy breech-block is now fitted to the gun, and

Before continuing with the remaining portion of the gear train, the pedestal must be completed in order to provide the necessary bearings for the drive. The two vertical $5 \frac{1_{2}^{\prime \prime}}{}$ Strips supporting the Motor carry at their top ends a second circle of $2 \frac{1}{2}^{\prime \prime}$ Small Radius Curved Strips fitted with $\frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ Angle Brackets in a similar manner to the lower circle. The work of building up the sides of the pedestal may now be carried out, and this consists of securing $5 \frac{1}{2}{ }^{\prime \prime}$ Strips between the two sets of Angle Brackets. The upper circle of Curved Strips carries at two opposite points, parallel to the Electric Motor side plates, two $2 \frac{1}{2}$ " Angle Girders, each of which supports two $2 \frac{1}{2}^{\prime \prime} \times 2 \frac{1_{2}^{\prime \prime}}{}$ Flat Plates forming the bearing surface for the gun pivot. The pivots for the guns consist of $\frac{3^{\prime \prime}}{8}$ Bolts 36 . It will be seen from Fig. 6 that the front lower corners of the $2 \frac{1_{2}^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime}$ Flat Plates carry Simple Bell Cranks fitted with Cranks.

The $\frac{1}{2}{ }^{\prime \prime}$ Pinion 30 engages with a similar Pinion that is
4. Three dummy recoil cylinders 44 are also fitted, and each of these consists of a $3 \frac{1}{2}^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{}$ Double Angle Strip bolted to the gun and surmounted by a further similar Double Angle Strip. The sides of each cylinder so formed are filled in by $3 \frac{1}{2}^{\prime \prime}$ Strips bolted to Double Brackets.

The gun pivot (Fig. 2) consists of two $1 \frac{1}{2}^{\prime \prime}$ Angle Girders 12, which are fitted with three $1 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ Double Angle Strips 13. These latter parts carry two Rack Segments 14 fitted edge to edge as shown, and are used for elevating and depressing the gun. Two further $1 \frac{1}{2}{ }^{\prime \prime}$ Angle Girders are mounted on the Double Angle Strips 13, and these carry three $1 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ Double Angle Strips that form the main turning surface of the gun.

When the two gun barrels are completed, the construction of the pedestal and power unit may be proceeded with, and for this part of the model Figs. 1, 5 and 6 will form useful references. The base consists of a Circular Plate on each side of which is fitted a Hub Disc. The upper Hub Disc is fitted with a Circular Girder, the necessary connection being made by four insulated Flat Brackets. A $3 \frac{1}{2}{ }^{\prime \prime}$ Gear Wheel 26 is secured to the base by means of eight $\frac{3^{\prime \prime}}{8}$ Bolts, two Washers being placed under the Gear Wheel on each Bolt for spacing purposes. A Ball Casing (part No. 168c) is shown in place on the $3 \frac{1^{\prime \prime}}{2}$ Gear Wheel, and this supports a Flanged Disc (part No. 168a) that in turn carries a Face Plate 45. A circle of $2 \frac{1}{2}{ }^{\prime \prime}$ Small Radius Curved Strips, carrying $\frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ Angle Brackets at every hole, is attached to this Face Plate by means of four Flat Brackets. Two $5 \frac{1}{2}{ }^{\prime \prime}$ Strips are bolted to two opposite of these Angle Brackets, and these Strips support a No. 6 Electric Motor, the necessary connections being made by $\frac{1}{2}^{\prime \prime}$ Bolts.

A $\frac{1}{2}^{\prime \prime}$ Pinion on the Motor armature shaft engages with a 57 -teeth Gear 22 . This Gear is mounted on a $2 \frac{1}{2}{ }^{\prime \prime}$ Rod that carries a Worm 23 engaging a $\frac{1}{2}^{\prime \prime}$ Pinion mounted on a sliding rod carrying at one end a $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ Pinion 24 and at the other a $\frac{1}{2}^{\prime \prime}$ Pinion 30, the lever 28 being fitted for engaging or disengaging these Pinions as required. The Pinion 24 drives, when desired, a $\frac{3}{4}^{\prime \prime}$ Contrate that is mounted on a vertical $5^{\prime \prime}$ Rod, the lower end of which carries a $\frac{3^{\prime \prime}}{4}$ Pinion 25.
 mounted on a $1 \frac{1}{2}^{\prime \prime}$ Rod carrying the Worm 29. This Rod is journalled at its inner end in a $1^{\prime \prime} \times 1^{\prime \prime}$ Angle Bracket secured to one of the side plates of the Electric Motor. The Worm 29 is in mesh with a $\frac{1}{2}^{\prime \prime}$ Pinion 31 that drives, through two $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ Pinions, a $\frac{1}{2}^{\prime \prime}$ diameter $\frac{1}{2}^{\prime \prime}$ face Pinion 32 on each side of the pedestal. The bearings carrying the Rod for the last stage of gearing are prevented from being distorted by a $3 \frac{1}{2}^{\prime \prime}$ Rod secured in the boses of the Cranks mentioned earlier. The Pinions 32 are carried on $2^{\prime \prime}$ Threaded Rods, the ends of which will be used later for supporting the rear platform.

The guns may now be mounted, and this is accomplished in each case by passing the Bolt 36 through the centre hole of the centre Double Angle Strip on the gun pivoting face. The Bolt is then fitted with locknuts and, on swinging the gun about its pivot, the Rack Segments 14 will be found to engage their respective Pinions 32. The pedestal and guns may now be placed in position on the base, a $1 \frac{1_{2}^{\prime \prime}}{}$ Rod gripped in the base of the lower Face Plate 45 serving as a central pivot. This pivot passes through the boss of the Gear 26 and is held in place on the underside by means of a Collar.

A small platform consisting of a $2 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$ Flat Plate is fitted to the front of the pedestal by means of two $1^{\prime \prime} \times 1^{\prime \prime}$ Angle Brackets. The rear of the pedestal also carries a platform, the construction of which is shown clearly in Figs. 1 and 6 ; and this platform is attached to the model by means of the Threaded Rods carrying the Pinions 32 .

The electrical equipment of the model consists of a

MECCANO ACCESSORY OUTFITS

Meccano Accessory Outfit No. $2 a$

Price List of
Meccano Accessory Outfits
No. 00a converts a No. 00 Outfit into a No. 0
No. Oa converts a No o Ouf into a No. 1
No. 1a converts a No. 1 . into a No. 2
No. 2a converts a No .. into a No. 3 No 2 Outfit No. 3a converts a No. 3 Outfit into a No. 4
are the stepping stones to bigger and better models

BOYS,
think of the hundreds of additional models you could build if you converted your present Outfit into the one next higher by means of an Accessory Outfit. Maybe you would be able to build some of the fine examples illustrated below, or even bigger ones than these. Meccano Accessory Outfits connect all the main Outfits from No. 00 to No. 7. A No. 00 may be converted into a No. 0 by adding to it a No. 00a Accessory Outfit-a No. Oa would then convert it into a No. 1, and so on. Get the Accessory Outfit you require to-day-and have more fun!

Flat Bracket. The resistance controller is attached to the pedestal by means of a $\frac{1_{2}^{\prime \prime}}{} \times \frac{1^{\prime \prime}}{2}$ and a $1^{\prime \prime} \times 1^{\prime \prime}$ Angle Bracket, and its construction is similar in every respect to Standard Mechanism No. 115. One lead from the source of electrical supply is connected to an earth terminal, and the other lead is connected to a terminal that is in contact with the insulated Circular Girder. The current passes from this Girder to the collector shoe 35 , from where it passes to one side of the resistance controller 34. The remaining terminal on the controller is then connected to one terminal of the Electric Motor, the other Motor terminal being earthed. Thus in all positions of the guns a supply of current is passing to the Motor, and this may be controlled by the rheostat 34. The Motor is started or reversed by means of the lever 27 , protruding through the pedestal casing as shown in Fig. 1; and complete control over the guns is obtained from the lever 28 ,

Probably the most interesting part of the model is the sighting and range-indicating apparatus, for this has been constructed on simılar lines to that fitted to actual guns. It will be noticed that this apparatus is fitted to both guns, but this is really unnecessary, except when the guns are used separately.
The sight of each gun consists of a $4 \frac{1}{2}{ }^{\prime \prime}$ Rod, fitted at each end with two Collars 40 and 42 , and mounted centrally in a Collar 19. Each set of Collars 40 and 42 are joined together by means of a Grub Screw, half of which is passed into each Collar. The Collar 42 has a vertical thin piece of wire gummed across it, and 40 is fitted with a small piece of tinfoil, the centre of which is pierced with a pin. The Collar 19 is locknutted to a $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ Angle Bracket 20, which in turn is locknutted to a similar Angle Bracket on one of the recoil cylinders. These locknuts must not be too loosely fitted, as this would impair the working of the apparatus. A scale for reading the lateral movement of the sight is fitted to the Collar 19 and to the Angle Bracket 20, and a semi-circular scale 21 is fitted for indicating the vertical movement.

The range indicator consists of a large Flanged

Wheel carrying a Pivot Bolt in its boss, on the head of which is gummed a circle of thin cardboard. A Crank, the boss of which is fitted with a Collar, is locked securely on to the outer threaded shank of the Pivot Bolt, and the weighted lever so formed always ensures that the inner cardboard disc remains in the same position relative to the surface of the earth. The slotted circle of cardboard 43 is gummed on to the rim of the Flanged Wheel. Thus when the gun is elevated or depressed, the ranges appear through the slot in the card 43 , and in this manner quick and accurate shooting may be obtained if the distance between the gun and the object of attention is known. In order to obtain the last-mentioned information it is necessary to use a range-finder, an excellent model of which appeared in the "M.M." for August 1931.

In shooting, the operation of the model is as follows. If the range is 40 ft ., the guns are elevated until 40 appears in the range indicator slot, and the sight is moved inward slightly so that the line of vision converges with the line of fire. The sight may now be moved vertically without interfering with the loading of the guns, and the guns are then rotated until, on looking through the hole at 40 , the object of attention appears directly in front of the vertical line at 42. The gun is now ready for firing, and if the range indicator and sighting apparatus have been graduated correctly, a " bull's eye" will be scored.

After a little practice great speed and accuracy of fire will be possible with these guns and, as in actual practice, the twin barrels will be found to make a remarkable percentage of "hits" possible. It is advisable to smear the washers, forming the shells, with a little thin oil before loading them into the guns for the first few shots, as this enables a smooth surface to be formed on the inside of the gun barrels.

In order to reduce friction to a minimum, oil in sufficient quantities, must be applied to all mechanical parts of the guns and also to the pivot faces and care must be taken to see that the Brush 35 is always in good contact with its Circular Girder. If these few
 out, little or no 36 mechanical trouble will be experienced with the model, and its construction and use will give many hours of entertainment and fun.

Fig. 6. ${ }^{\text {T }}$
This shows the complete
pedestal, gun
minus
guns, with
ge stairways platforms in position.

New Meccano Models

Wire Coverer-Arch Bridge-Crane-Meccanograph-Level Crossing Gates, etc.

\bigcircNE of the most remarkable features of Meccano model-building is the extraordinarily wide range of machines and structures of which faithful reproductions may be made, even with small Outfits, and the interest of the hobby makes it a source of almost unlimited pleasure. The new models described this month illustrate this wonderful variety, and also show how model-building encourages invention and gives opportunities for the introduction of ingenious ideas in overcoming little difficulties met with in construction.

Wire Covering Machine

The model shown in Fig. 1 is a machine that enables a coil of bare wire to be covered with a layer of cotton thread, thus converting the bare wire into the covered insulating type.

The frame of the model consists of two $12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Angle Girders spaced apart by $3 \frac{1}{2}^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{}$ Double Angle Strips. A $3 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$ Flanged Plate is bolted in position at one end of the model and two similar Plates are secured to the side Girders at the other end of the frame. Two $3 \frac{1}{2}{ }^{\prime \prime}$ Strips are bolted between these Plates so as to form a frame in which the gearing may be secured. A $3 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ Double Angle Strip is supported in position close to one end of the frame by means of four $3 \frac{1}{2}{ }^{\prime \prime}$ Strips, and a $4 \frac{1}{2}{ }^{\prime \prime}$ Axle Rod is mounted in the frame so formed. This Axle Rod forms the drum on to which the wire that has been covered is wound. Two $1^{\prime \prime}$ Fast Pulleys are secured on this Rod and serve to couple it to the operating handle of the model, thus enabling the take-up action to be carried out. A $4 \frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ Axle is mounted rigidly in the boss of a Bush Wheel that is secured to one of the $3 \frac{1}{2}^{\prime \prime}$ Strips forming the gear-box. A 57-teeth Gear Wheel is mounted loosely on this Rod, and a $2 \frac{1}{2}{ }^{\prime \prime}$ Strip carrying a Crank at each end is attached to the Gear Wheel, being spaced away from its face by means of Washers. An Axle Rod is mounted in the boss of each Crank and the bobbins carrying the cotton thread are mounted on these Axles.

The bobbins are prevented from sliding up and down the Rod by means of two $3 \frac{1}{2}{ }^{\prime \prime}$ Strips held in position by means of Collars and Spring Clips.

Fig. 2. Centrifugal Governor. 19; 1 of No. $21 ; 4$ of No. $22 ; 1$ of No. $24 ; 2$ of No. $16 ; 1$ of No. $26 ; 1$ of No. $27 \mathrm{a} ; 1$ of No. $32 ; 5$ of No. 35 ; 26 of No. 37 ; 4 of No. 37 a; 6 of No. $38 ; 1$ of No. $40 ; 2$ of No. $48 \mathrm{~b} ; 3$ of No. 53 ; 4 of No. 59 ; 2 of No. 62 ; 2 of No. 111 ; 2 of No. 111c.

Centrifugal Governor

the rotating frame, the end of the wire being anchored to the take-up axle by means of a Spring Clip. The ends of the cotton threads are then led through the holes in the lugs of the Angle Brackets, and fwisted round the bare wire. It is a good plan to use a dab of glue in order to hold the ends of the
threads in position. When the Crank Handle is threads in position. When the Crank Handle is
turned the cotton threads are twisted round the bare wire, while at the same time the wire is slowly drawn from the Bobbin on to the take-up drum. In this way a layer of cotton is formed on the outside of the wire. In order to build this model the following parts will be required :5 of No. $3 ; 5$ of No. $5 ; 2$ of No. 8 4 of No. 12a; 2 of No. 15 ; 1 of The front $3 \frac{1_{2}^{\prime \prime}}{}$ Strip also carries two $1^{\prime \prime} \times 1^{\prime \prime}$ Angle Brackets, and the holes in the lugs of these Brackets form guides through which the cotton threads are led on to the wire that is to be covered. The Bobbin carrying the wire is mounted in a holder composed of a $1 \frac{1_{2}^{\prime \prime}}{}$ Pulley Wheel bolted rigidly to the central axle. Two $1^{\prime \prime} \times 1^{\prime \prime}$ Angle Brackets are bolted to the face of the Pulley, and a $\frac{1}{2}^{\prime \prime}$ Bolt is secured in the end holes of each lug of the Angle Brackets by means of a Nut. The projecting shanks of these Bolts pass into the centre bore of the bobbin carrying the bare wire, and the bobbin is thus held in place.

A Crank Handle is mounted in the gear-box, and a $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Pinion is secured on one end. This Pinion meshes with the 57-teeth Gear carrying the frame on which the thread bobbins are mounted, and by rotating the Crank Handle these bobbins are driven round. The take-up action is effected by means of a Worm mounted on the Crank Handle shaft which meshes with a $\frac{1}{2}{ }^{\prime \prime}$ Pinion secured on a transverse shaft mounted in the gear-box side plates. A $1^{\prime \prime}$ Fast Pulley is mounted on each end of this Rod, and the Rod is coupled up drum by means of two

To operate the model, the carrying the bare wire and the threads (which may be of two colours) are placed in position, bare wire is then threaded centre hole in the $3 \frac{1}{2}{ }^{\prime \prime}$ Strip

The upper ends of the $2 \frac{1_{2}^{\prime \prime}}{}$ Strips are pivotally connected to an Angle Bracket by means of a Bolt and two locknuts. The Angle Bracket is held in place on the vertical Axle by means of two Spring Clips, one Clip being placed with its " wings" engaging with the outer locknut of the pivot, so that the Bracket will turn at the same time as the Rod.

A Flat Bracket is pivotally secured to each governor arm by means of a Bolt and two locknuts, and an Angle Bracket is attached to each of the Flat Brackets by further Bolts and locknuts. A second pair of Angle Brackets are now bolted to those already in position, and these are secured to two Double Brackets that are free to slide up and down on the vertical axle. A 1" Fast Pulley is secured rigidly to the vertical Axle and this Pulley is coupled to a second $1^{\prime \prime}$ Pulley mounted on a Crank Handle by means of a crossed belt. The vertical Rod is preing upward by means of a on the Rod against the base plate.
Handle is rotated, the vercotton distinctive and the through the attached to
valve of the engine, and matters are arranged so that as the sliding member rises the supply of steam is reduced. In this manner the speed of the engine is kept constant.
The parts that are required in the construction of the Governor are as follows :- 2 of No. 5 2 of No. $10 ; 2$ of No. 11 5 of No. 12; 1 of No. 16; 1 of No. 19s; 3 of No. 22 ; 1 of No. 24 5 of No. 35 ; 17 of No. 37 ; 3 of No. 37 a ; 1 of No. 52; 2 of No. 126a.

Arch Bridge

Among the many types of bridges that are erected in all parts of the world none gives a more wonderful impression of grace and strength than the arch bridge. The most famous example of this type is the recently completed Sydney Harbour Bridge.
The model shown in Fig. 3 uses few parts, but in spite of this a close resemblance to the arch type bridge has been obtained. The anchorage towers of the model are built from $5 \frac{1}{\frac{1}{2}^{\prime \prime}}$ and $2 \frac{1_{2}^{\prime \prime}}{}$ Strips spaced apart by $3 \frac{1}{2}{ }^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{}$ and $2 \frac{1 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}}{}{ }^{\prime \prime}$ Double Angle Strips so as to provide a slightly tapered structure.
Two compound Girders, each composed of two $12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Angle Girders, are secured between the towers, as can be seen in the illustration. A $4 \frac{1}{2}$ " Axle Rod is placed in position in the base of each tower, and two Angle Brackets are slipped on to each Axle Rod, the ends of the arch members being anchored to these Brackets.
The arch itself is built up from eight $12 \frac{1^{\prime \prime}}{}$ Strips and two $12 \frac{1}{2}{ }^{\prime \prime}$ Braced Girders. The Braced Girders are interconnected by lengths of Cord that are threaded between the Girders in zig-zag manner. Lengths of Cord are also secured in vertical positions between the lower portions of the arch and the road-way Girders to represent the suspension members.
To add the finishing touch to this model a strip of stiff cardboard should be cut to size and bolted in position between the Girders, to represent the roadway.
The arch bridge contains the following parts:-8 of No. 1 ; 8 of No. 2; 2 of No. 3 ; 12 of No. $5 ; 4$ of No. $8 ; 4$ of No. 12 ; 2 of No. $15 ; 8$ of No. 35 ; 52 of No. 37 ; 8 of No. 38 ; 1 of No. $40 ; 8$ of No. 48a; 2 of No. 99.

Hammerhead Crane

 one of the most popular cranes in the Super Model series. The model is of course a very large one, and model-builders who wish to build a smaller and simpler version of this type of crane will be interested in the example shown in Fig. 4. This model incorporates two separate motions, hoisting of the crane block and travelling of the crane block trolley. The boom of the crane can also be slewed, but this action must- be carried out by hand.The vertical standard on which the boom of the crane rests is built up as follows. The top platform consists of two $5 \frac{1^{\prime \prime}}{} \times 2 \frac{1_{2}^{\prime \prime}}{}$ Flanged Plates spaced half an inch apart by means of two $2 \frac{1}{2}^{\prime \prime}$ Strips, one of which can be seen bolted to the side flanges of the Plates. Four $12 \frac{1}{2}{ }^{\prime \prime}$ Angle Girders are secured at the corners of the Flanged Plates, and these Angle Girders are spaced apart at the base by means of $5 \frac{1}{2}{ }^{\prime \prime}$ Strips, Cord bracing being arranged between the Girders as shown in the illustration.
A $3^{\prime \prime}$ Pulley is mounted boss downward on the Flanged Plates, the boss passing into the space between the Flanged Plates. The boom of the crane is built up from $12 \frac{1^{\prime \prime}}{}$ Angle Girders and $12 \frac{1}{2}^{\prime \prime}$ and

The Hammerhead Crane (Super Model No. 29) is

Fig. 5. Many interesting designs can be produced with this simple ${ }^{\text {Meccanograph. }}$ Fig. 6.
crossing
Level-
Gates with lever and cord operating gear. is passed round a $1^{\prime \prime}$ Pulley mounted in a Cranked at the front end of the boom, and is then tied to the trolley. Rotation of the Bush Wheel fitted with Threaded Pin will cause the trolley to be drawn either forward or backward along the top of the boom.

This Meccano Hammerhead Crane contains the following parts :2 of No. $1 ; 16$ of No. $2 ; 4$ of No. $3 ; 2$ of No. $4 ; 12$ of No. 5 ; 2 of No. 6a; 8 of No. $8 ; 4$ of No. $10 ; 1$ of No. $12 ; 1$ of No. 15 a ; 2 of No. $16 ; 1$ of No. $17 ; 2$ of No. 18a; 1 of No. $19 ; 1$ of No. 19b ; 4 of No. 20b ; 4 of No. 22 ; 1 of No. 23 ; 1 of No. 24 ; 7 of No. 35 ; 94 of No. $37 ; 4$ of No. $38 ; 1$ of No. $40 ; 1$ of No. $44 ; 1$ of No. 48 7 of No. $48 \mathrm{a} ; 2$ of No. 48 b ; 2 of No. $52 ; 3$ of No. $53 ; 2$ of No. $54 ; 1$ of No. $57 ; 3$ of No. 59 ; 1 of No. 90 a ; 1 of No. $111 ; 1$ of No. 115 2 of No. 126; 2 of No. 126a; 1 of No. 162.

A Simple Meccanograph

Most Meccano boys will be familiar with the Meccanograph that forms the subject of Super Model No. 13. This machine enables a wide variety of artistic designs to be produced merely by turning a handle, and it is possible to obtain hours of enjoyment from the machine. In Fig. 5 is shown a small edition of the Meccanograph, from which a large number of interesting designs may be produced.
The frame of the model consists of four $12 \frac{1}{2}{ }^{\prime \prime}$ Angle Girders and a $5 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime}$ Flanged Plate is bolted in position at each end of the frame. The carriage on which the pencil arm pivots is built up from a $5 \frac{1}{2}$ " Strip, two Flat Trunnions and two $1 \frac{1}{2}^{\prime \prime} \times \frac{1^{\prime \prime}}{\frac{1}{2}^{\prime \prime}}$ Double Angle Strips. The carriage is mounted on guides consisting of Axle Rods secured in Angle Brackets bolted to the frame. The pencil arm consists of a $12 \frac{1}{2}{ }^{\prime \prime}$ Strip fitted with a Cranked Bent Strip at one end, and the pencil is placed in this Strip and held in position by means of a small elastic band 1. The pencil arm is pivoted on an Axle Rod secured in the boss of a Crank that is bolted to the carriage. The Strip is mounted between a $1^{\prime \prime}$ Fast Pulley and a $\frac{3}{4}^{\prime \prime}$ Flanged Wheel, and by removing the Flanged Wheel and altering the pivoting point of the Strip, the designs

51/" Strips. A $3 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime}$ Flanged Plate is bolted in position on the lower portion of the boom, and this Plate rests on the $3^{\prime \prime}$ Pulley secured to the fixed base. A $\frac{3^{\prime \prime}}{8}$ Bolt is passed through the centre hole of the Flanged Plate and is gripped in the boss of the $3^{\prime \prime}$ Pulley. In this way the boom may be swivelled about the fixed base.
Two Sector Plates are secured to the rear end of the boom and provide supports for the operating Rods. The crane block trolley consists of two $2 \frac{1 \frac{1}{2}^{\prime \prime}}{} \times \frac{1_{2}^{\prime \prime}}{}$ Double Angle Strips held apart at each end by means of Flat Trunnions. The trolley is fitted with four $\frac{3{ }^{\prime \prime}}{4}$ Flanged Wheels mounted on $3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Axle Rods. A Flat Bracket is secured to each side Angle Strip, and these Brackets serve to support an Axle that carries a $\frac{1}{2}$ " Loose Pulley. One end of the crane block hoist cord is attached to the frame of the trolley, while the other passes round the crane block sheave and round the $\frac{1_{2}^{\prime \prime}}{2}$ Pulley on the trolley, afterwards being attached to a Crank Handle mounted in the Sector Plate at the rear of the boom.
The travelling motion consists of a shaft journalled in the Sector Plates and carrying a $1^{\prime \prime}$ Fast Pulley and a Bush Wheel fitted with Threaded Pin, which thus forms a hand wheel. A length of Cord is wound twice round the groove of the $1^{\prime \prime}$ Pulley and one end of the Cord is tied to the trolley. The other end

MECCANO PARTS \& ACCESSORIES

2. Plates

 HE manufacture of steel plates in actual practice has reached a very high degree of perfection. This is due chiefly to the amazing developments brought about by the different nations in their endeavour to produce plates of sufficient toughness to withstand the ever-increasing power of enemy armour-piercing projectiles and high explosive shells. Fortunately, however, the new inventions and improved methods of preparing and rolling the metal thus brought to light are also being adapted to civil life.Our modern banks and safe-deposits are provided with strong-rooms that defy bombs, burglars, fire and floods; steel-encased motor-cars have been built to travel at speeds of 250 miles and over per hour ; all-metal aeroplanes have been propelled at more than 400 miles per hour ; and boilers and steam engines are now designed to withstand pressures of thousands of pounds per square inch, although not very long ago engineers dared not go beyond pressures of three or four hundred pounds!

Meccano plates, like their prototypes in real engineering, are made of the finest steel only. They are richly enamelled in bright colours -red and green-and the holes are punched cleanly and accurately. The holes are arranged according to the Meccano equidistant system, which enables the plates to be incorporated in any kind of model and used for a thousand and one different purposes.

Prices of Meccano Plates, Trunnions, etc.

NO_{8}	Pers.							d.
52.	Perforated Flanged Plates,	$5 \frac{1}{2}^{\prime \prime} \times 2$				each	0	5
52a.	Flat Plates, $5 \frac{1 \frac{1}{2}^{\prime \prime}}{} \times 3 \frac{1}{2}^{\prime \prime}$						0	5
53.	Perforated Flanged Plates,	$3 \frac{1}{2}^{\prime \prime} \times$				",	0	3
53a.	Flat Plates, $4 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$						0	3
54.	Perforated Flanged Sector	Plates	\ldots				0	3
61.	Windmill Sails ...		\ldots	\ldots	...	4 for	0	6
70.	Flat Plates, $5 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$	\ldots	\ldots		...	each	0	4
72.	", ${ }^{\text {a }}$, $\frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$	\ldots	\ldots	\ldots			0	2
73.	, ", $3^{\prime \prime} \times 1 \frac{1}{1 \prime}$..	\ldots	\ldots	...	2 for	0	3
76.	Triangular Plates, $2 \frac{1}{2}^{\prime \prime}$	\ldots	\ldots	\ldots	...	each	0	2
77.	," ${ }^{\prime \prime} 1^{\prime \prime}$		\ldots	...			0	1
109.	Face Plates, $2 \frac{1}{2}^{\prime \prime}$ diam.		\ldots	\ldots	\ldots	"	0	4
126.	Trunnions, $1^{\prime \prime}$ deep, $\frac{1}{2}^{\prime \prime}$ flang		\ldots	...		,"	0	2
126a.	Flat Trunnions, $1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$		\ldots			,"	0	1
133.	Corner Brackets, $1 \frac{1}{2}{ }^{\prime \prime}$			\ldots		,	0	1
133a.	" $1^{\prime \prime}$		\ldots	\ldots		,	0	1
146.	Circular Plates, 6" diam.					,	1	0
146a.	, ", $4^{\prime \prime}$,	0	6
162.	Boiler, complete with Ends					"	1	0
162a.	" Ends	...					0	3
162b.	", without Ends	\ldots	\ldots	\ldots			0	

Your dealer will be pleased to show you all the Meccano Parts. Ask him for a complete list.

How Many Errors in this Engine? Special Summer Competition

During the sunny months of summer few Meccano boys can spare much time for thinking out how to build a particular kind of Meccano model, or how to use their Outfits to the best advantage. Most of them are busy with outdoor sports and pastimes, and in view of this we are organising this month a special type of Competition that does not require a Meccano Set in order to compete. Meccano boys can prepare their entries for this month's competition while enjoying a quiet hour on the beach or resting on the grassy banks of a country lane! All they require is a copy of this month's "M.M."

On this page appears an illustration of a Meccano model vertical marine engine. A few minutes' study will show that dozens of ridiculous mistakes have been made in building the model, and all a competitor has to do is to write down carefully on a sheet of paper as many of the mistakes as he can find in the model. Then it is only necessary to state briefly how each error should be corrected. There are no entrance fees or forms.

It should be clearly understood that to enter this contest one need not be an expert essayist; any boy who "spots" a large number of the mistakes and sets down his criticisms in a clear manner stands a very good chance of obtaining one of the principal awards.

This pleasant summer competition provides model-builders with an excellent opportunity to win valuable prizes of Meccano goods that will greatly increase the scope of their Outfits, so that when the long winter evenings come again they will be able to build bigger and more interesting models than ever before.

A glance at the illustration of the engine will show that mistakes have been made both in designing and constructing the model. Many of the mistakes are obvious, and any Meccano boy who has a slight knowledge of model-building and understands the elementary principles of steam engines should be able to point them out without difficulty.

Competitors should write their lists of errors in column form and then, against each item on the list, state briefly the best way in which they think the fault may be corrected. There is no doubt that many boys will be able to discover all the mistakes quite easily by building up the actual model for themselves, but it is not at all necessary to do this, for every error is plainly shown in the accompanying illustration. If no competitor succeeds in pointing out every mistake in the model the First Prize will, of course, be awarded to the competitor
whose list contains the largest number of errors. If two or more competitors succeed in pointing out all the errors, the judges will give preference to those entries that are the most neatly prepared, and which contain the clearest descriptions of how the errors should be corrected.

It should be noted that there are two types of errors in the model. The first type relates to the manner in which the various Meccano parts have been used, which it will be noted in many instances is not in accordance with good Meccano practice! It is assumed, of course. that the builder had the correct Meccano parts available when he constructed the engine. The second type of error concerns the technical details of the model.

Entries will be divided into two separate sections as follows:-Section A for competitors of all ages residing in the British Isles; Section B for competitors of all ages residing Overseas. The prizes to be awarded in each Section are stated in the panel on this page.

In sending in their entries competitors should write on one side of the paper only, and should take particular care to see that their name, age and address appear on the back of each sheet of paper submitted, together with the name of the contest (June "Errors" Contest) and the Section (A or B) for which the entry is eligible.

Envelopes containing entries should be addressed to June "Errors " Contest, Meccano Ltd., Binns Road, Old Swan, Liverpool.

Lists of errors should be prepared as neatly as possible, and descriptions of how the model ought to be built should be kept brief and precise. Competitors who consider that their descriptions will be made clearer by means of diagrams may send these along together with the written matter.

Competitors entering Section A must post their entries so that they reach Liverpool not later than 30th July, 1932. Overseas competitors entering in Section B must forward their entries to reach This Meccano Marine Engine is literally " bristling ",
with constructional mistakes. Prizes are offered to with constructional mistakes. Prizes are offered to
the boys who can discover the greatest number ! Liverpool by 30th September, 1932.

Successful competitors will be advised by post as soon as possible after the closing dates, and a full account of the Contest will be published later in the "M.M." This Contest calls into play the modelbuilder's knowledge of the correct design of a Meccano model, and at the same time there is heaps of fun to be obtained from " spotting " the errors !

Model-Building Contests Results

By Frank Hornby

"August" Competition: Section B

T
HE full list of prize-winners in Section A of the "August" Contest was published in the May "M.M.," and this month I have pleasure in announcing the results in Section B The entries in this Section were more numerous than in Section A but the quality of the models is not quite so high, although the prize-winning models are quite worthy of the success they have achieved. Many competitors lost their chance of success simply because they went to little or no trouble to prepare neat drawings or clear photographs. These are most important points in Meccano model-building Contests, for no matter how well built a model may be the judges cannot estimate its merits correctly unlessit is clearly shown in the drawing or photograph.
Section B (for Home competitors under 14 years of age).
FIrst Prize, Meccano or Hornby Train
 Tyseley, Birmingham. SECoND PRIzE,
Meccano or Hornby Train goods value $€ 1-1 \mathrm{~s}$. Meccano or Hornby Train goods value $f 1$ 1-1s. :
Le J. Coe, Ipswich. Third Prize, Meccano or Hornby Train goods value 10/6: 'Colin Millard, Lanesfield, Wolverhampton.
Six Prizes of Meccano or Hornby Train goods value $5-i$ B. Reynish, Norwich; D. Close, Stony-
Ourst
Blackburn hurst, Blackburn ; I. Overington, Morthing, Morison (joint entry), Cambridge; R. Cook, Great Marmouth
Twelve Prizes of Meccano Instruction Manuals (two
volumes): J. Horrox, York; D. Franklyn, Shirley Birmingham; W. Stephens, Cardiff; W. Nichols, Colchester; E. Amery, N. Wembley, Middx. ; J. Bland, Frant, Tunbridge Wells ; A. Robinson, Manchester ; J. Fitzzibbons, London, N.1 ; D. Manton, Hall Green, Birmingham; P. Mat
Oxford S. Smith, Enfield, Midxx ; J. MacDougall, Greenock, Scotland.

Oxford ; S. Smith, Enfield, Middx. ; J. MacDougall, Greenock, Scotland
Twelve Prizes of Meccano "Engineer's Pocket Books": K. Flower, Groudle Twelve Prizes of Meccano
Glen, I.O.M.; R. Engineers Porke A. Eliott, Bishops Stortord ; A. Ringrose, Limerick, Ireland; Glen, I.O.M. ; R. Eliot, Bishops Swortiord London, N.6; J. Dinwoodie, Edinburgh ; E. and N. Johnson (ioint J. Breakwell, London, N. 6 ; J. Dinwoodie, Eamburgh; Middx. ; E. Chamberlain, entry), Rock Ferry, Birkenheadil; D. Johnson, yarrsen, M. G. Smythe, Drumoak,
Solihull, Warwicks.
V. Knill
 Aberdeenshire ; A. Thomson, Pessersime Winchmore Hill, London, N.21; R. Davies, Harrow ; O. Thomas, Solihull, Warwicks. ; V. Keston, London, N.16; F. Shipley, London, S.E. 25 ; R. Hansen, Chelmsford, Essex ; B. Way, London, S.W. 19 ; A. Eves, Chatham, Kent ; D. Robinson, London, N.S ; F. Greenwood, Southport, Lancs.; F. Lloyd, Middlesbrough, Yorks.; R. Dickenson, Wallasey ; K. Jones, Lancs.; Froydond, A. Andrews, London, N.1; H. Mason, Leicester ; R. Eglen,
 Middx. ; W. 'Hudson, Gillingham, Kent ; J. Laidlaw, St. Boswells, Roxburgbshire ; A. French, Stonehouse, Glos. ; D. Bassil, Kingston, Surrey ; H. Liversidge, Castleford, Yorks. ; J. T. Davies, Abergavenny, Mon.; R. Featherstone, Derby ; G. Keys, Stone, Staffs. A boy of 13 years won First Prize in Section B. He is Raymond Atter of Tyseley, Birmingham ; and his model, a three-engined biplane, is illustrated here. It is a splendid piece of work and does great credit to so young a boy. The aeroplane is of the bombing type, and it will be seen that guns are mounted on the upper plane. The rudder and aileron control wires give a very realistic appearance to an altogether praiseworthy model. A coastal cargo steamer provided L. J. Coe, of Ipswich, with arr interesting subject for the model with which he won Second Prize. Unfortunately it was not possible to include an illustration of this model owing to lack of a suitable photograph. The hull of the model is well built, and on the deck are two cranes each of which can be worked by a windlass so that they may be used to handle light cargo. A model steam winch is fitted for the purpose of " weighing anchor." A set of realistic lifebelts is included in the deck fittings, the lifebelts being made from $\frac{5}{8}{ }^{\prime \prime}$ Rubber Rings wound with cord.

Machine tools do not often appear in Meccano competitions, although they are admirable subjects for reproduction. Section B of the "August" Competition, however, produced a good model of this kind. It is a radial drilling machine, and won the Third Prize for Colin J. Millard of Lanesfield, Wolverhampton. The drill is worked by a Meccano Clockwork Motor mounted on the bed of the model, and after reduction the Motor drive is transmitted to the

Duncan Young of West Croydon won
Duncan Young of West Croydon won model of a Cochran Boiler. It is model of a Cochran Boiler. It is fitted with water tubes, fire box, steam
chamber and hinged combustion chamber doors.
pillar shaft by Bevel Gears. The radial arm or " swing " rotates on two Pulley Wheels placed face to face, with Angle Brackets secured round their peripheries in order to prevent them from working apart. The radial arm is constructed from Angle Girders, and the traversing head or carriage that carries the drill travels along the edges of the Angle Girders. The head is moved backward and forward by means of a handwheel. The drive to the drill from the pillar shaft is by means of Meccano Cord, which passes round a Pulley on the outer end of the radial arm, over a jockey Pulley, and thence to a Pulley on the drill spindle. Mechanism is incorporated for raising and lowering the radial arm, and also for feeding the drill spindle to the work to be drilled. A neat fire engine driven by a Meccano Clockwork Motor won a prize for T. Overington of Worthing. The escape ladder is arranged so that by turning a Crank Handle the movable portion of the ladder slides upward between the flanges of Angle Girders forming the sides of the lower or fixed ladder. A piece of Cord attached to the lower end of the movable Competition. It was built by "August Competition.
Atter, Tyseley,
Birmingham. was built mounted on the upper wing. ladder, and then carried over a $\frac{t_{2}^{\prime \prime}}{}$ Pulley at the top of it, is finally brought back to the rear of the escape and attached to the Crank Handle, which is journalled in two Trunnions bolted to the lower end of the fixed ladder. The other details of the model follow conventional lines.
R. B. and J. B. Morison combined their Outfits and built a good model of a low wing monoplane of a type popular in pre-War days. The model is quite a big one, the wing span being 3 ft .10 in . and the length of the fuselage 2 ft .3 in . The wings are supported by a king-post fixed on the fuselage just in front of the cockpit. A simple but realistic motor tractor fitted to a three breast caterpillar plough was submitted by R. S. Cook of Great Yarmouth. The motive power of the tractor is provided by a Meccano E2 Electric Motor, which takes the place of the usual paraffin engine. The breasts of the plough are realistically represented by Propeller Blades, and they can be raised and lowered by operating a lever fixed close to the driver's seat. A handwheel is also provided for lifting the shears from the ground when the machine is not ploughing. The mechanism of the tractor includes a two-speed and reverse gear-box, brake, and belt drive to a radiator cooling fan. It is interesting to note that the tractor, which is equipped with caterpillars made from Sprocket Chain, will easily climb obstacles placed in its path.

A model of the Atlantic Transport Line Co.'s, S.S.
"Minnewaska" won a prize for D. Penzig, London, N.3, and a wind pump by D. M. Close of Stonyhurst, Blackburn, also received an award.
One of the most original entries in Section B was that sent in by Bruce Reynish of Norwich. It consists of a reproduction of an ingenious device that is extensively used in America for the preliminary training of air pilots. It consists simply of a " joystick" mounted on a baseboard exactly as in an aeroplane, with a small model aeroplane so arranged that by moving the "joy-stick" the would-be pilot can see exactly how each movement of the control affects the flying of the aeroplane. The " joy-stick" is connected by cords to the model in such a manner that appropriate movement of the "stick" causes the model to climb, bank, or perform any of the evolutions of an actual machine !
Many other really good entries were received but of course it was not possible to give each competitor a prize. To those who failed to win a prize I can only say, try again! And may they have better luck next time !

ENGINE CROSSHEAD CONSTRUCTION

In practically every type of reciprocating engine a crosshead is utilised. The crosshead is the unit that couples the piston rod with the connecting rod; it moves backward and forward in guides or slide bars that are secured rigidly to the frame of the engine. In this way the reciprocating motion of the piston is transmitted to the crankshaft via the connecting rod. In Meccano models of reciprocating engines the crossheads fulfil exactly the same function as the large units used in actual practice. The construction of model crossheads allows for considerable variation in design, and numerous interesting forms have been evolved for special models.
A simple crosshead that will be found to operate very satisfactorily when a "rod" type of connecting rod is used is assembled as follows. A Large Fork Piece is secured to the end of the piston rod and a Coupling is pivoted in the fork of the Fork Piece by means of a short Axle Rod. This Rod carries an Eye Piece at each end, and each Eye Piece slides on a Strip that is mounted in a horizontal position above the bed-frame of the engine. These Strips form the crosshead slide bars. The Rod forming the connecting rod is secured in the end bore of the Coupling that is pivoted to the Fork Piece.
An important point to remember when using a crosshead of this type is that the Strips forming the slide bars and the Eye Pieces must be kept well lubricated so as to reduce friction to the lowest possible amount. The slide bars should be very carefully tested for alignment in the first instance, so that there is no tendency for the sliding unit to jam.
In a model where the connecting rod is of the "strip" type, as for example in a model of a railway locomotive, a slightly different form of construction
is used. The piston rod in this case is used. The piston rod in this case is passed through the centre transverse hole of a Coupling so that it projects is secured in each end of the longitudinal bore of the Coupling. An Eye Piece is placed on each short Rod, and these Eye Pieces slide on guide bars fixed to the frame of the
model. A Strip Coupling is now model. A Strip Coupling is now secured on the projecting end of the
piston rod and the Strip forming the piston rod and the Strip forming the Strip Coupling by means of a ${ }^{\prime \prime \prime}$ ${ }_{\text {Bolt. }}$
A novel and realistic pattern of crosshead was recently designed for a special model of a triple-expansion marine engine, and details of this will doubtless be of interest to constructors. The crosshead is formed from four
$11^{\prime \prime}$ Angle Girders and eight $1^{\prime \prime}$ Corner Brackets (part $\frac{12^{\prime \prime}}{}$ Angle Girders and eight $1^{\prime \prime}$ Corner Brackets (part
No. 133a). The Corner Brackets are arranged in sets No. 133a). The Corner Brackets are arranged in sets
of four to form the back and front of the unit, while the Angle Girders form the sides. Two $1 \frac{1}{2}^{\prime \prime}$ ' Strips are Angle Girders form the sides. Two lizes
secured against each pair of Angle Girders and two collars are in turn fixed to each pair of Strips by means of Bolts passed into the threaded bores of the four Collars. A Coupling is securedinthe centre of the crosshead and this holds the end of the piston rod. A small Fork Piece is also pivoted to the lower end of the Coupling and the connecting rod is fixed in the boss of the Fork Piece.
The crosshead slides in guides formed from two pairs of Angle Girders secured to the frame of the engine. Each pair of Girders should be carefully spaced
apart so that there is just sufficient room for the Collars to slide easily between them. This type of crosshead has a particularly realistic appearance, and if carefully adjusted and lubricated will be found to give extremely satisfactory results, even though the engine is called upon to run continuously over long periods. A somewhat simpler form of this crosshead may be produced by dispensing with the $1 \frac{1}{2}$ " Angle Girders and $1 \frac{1}{2}$ " Strips and using Double Brackets in their stead. A Collar is secured to each Double Bracket by means of its threaded bore, and these Collars slide in guides formed from Angle Girders in a similar manner to the unit described previously.

Recently we have received queries from owners of No. 2 Aero Constructor Outfits regarding the construction of "biplane" tail units. Two tail-planes are fitted to certain heavy aeroplanes and flying boats in order to obtain greater stability. The most famous British aeroplane making use of a tail unit of this type is the Armstrong-Whitworth "Argosy " air liner, and several readers wish to fit a tail unit of this type to the Triple-engined Air Liner (Model No. 7 in the No. 2 Aeroplane Instruction Manual) so that this model will more closely resemble its prototype. It is not possible to assemble a special biplane tail unit for this model

The accompanying illustrations show two interesting examples of Meccano marine engineering. The illustration three-cylinder vertical marine engine. Below is seen a realistic model of a battleship of the "Revenge" class. This model is fitted with eight large turret guns, control tower, wireless aerial, etc.

Bracket in place and two Washers are slipped on to its shank for spacing purposes,
While dealing with the use of the Extension Plane in the construction of tail units, we would remind readers that many of the Aeroplane Parts may be adapted for other uses in addition to those shown in the Aeroplane Instruction Manual. For example, if it is required to reproduce a prototype in which the engines are mounted in casings supported above the wing on struts (as for example the British Saro Cutty Sark" and some Continental machines). This assembly nay be reproduced with the standard Aero Parts by mounting the Engine Casing units upside down and supporting these on Straight Centre Section Struts part No. P29). The Centre Section Struts may be secured to the wing by of the multiple application Numerous other instances of the multiple application of the parts will be found by constructors.

A NOVEL DRIVING WHEEL

The elastic torsion motor has for some time been very popular for driving model flying aeroplanes, miniature speed boats, etc., but this type of motor has not been applied to any great extent in Meccano model-building. everal readers have written to us suggesting that ubber torsion motors should be used in the simpler mobile models. One constructor, for instance, fitted a rubber motor into a small Meccano chassis and conBevel Gears. The Motor itself consisted of a number Bevel Gears. The Motor itself consisted of a number each end. With this he obtained some remarkable results. The drawback with a driving unit of this type, however, is that the power output varies considerably luring the run, the speed and power falling off to a marked extent when the elastic becomes partly unwound. In spite of this, the system possesses several advantages, and we see no reason why model-builders should not experiment with this type of power unit in their models. We shall be pleased to receive details from constructors who carry out work on these lines.

PETROL TANK.-Your suggestion that we should introduce a special tank for use in models of petrol lorries, railway tank cars, etc., is interesting, but we Boiler complete with Ends serves this purpose admirably. If a larger tank is required, it can be built up from a number of Strips Face Plates that act as the ends of the tank. If a still larger drum is required, $5 \frac{1}{n}$ Hub Discs may be
used as the ends of the drum, and Strips bolted to the flanges to form the sides. (Reply to J. MacDougall, Saxmundham.)
within the limits of a No. 2 Outfit, but by obtaining a few separate Aero Parts a very realistic unit can be assembled.
A tail unit for the " Argosy" liner may be built up from seven Extension Planes (part No. P8) and 13 Angle Brackets. Two Extension Planes are used to form both the top and the bottom planes, and the multiple-rudder section is represented by three further Extension Planes held in place by means of Angle Brackets. These Extension Planes should be secured in position so that they project slightly at the rear, thus following actual practice. The complete tail unit is attached to the rear of the fuselage by means of two Angle Brackets. A $\frac{3}{8}{ }^{\prime \prime}$ Bolt is used to hold the outer

NEW PINION.-In the construction of very compact gear-boxes, the bosses of the standard Pinions are sometimes inclined to prove cumbersome. Your suggestion grub screw holes bored through the toothed portion, thus dispensing with the boss, is interesting and presents possibilities. We are afraid that the idea is not practicable in the case of the $\frac{1}{2}$ " Pinion owing to the relatively small amount of metal between the tooth and the axle bore, but it might. be applied successfully to the larger Pinions and Gears. We shall consider your idea. (Reply to E. Deakin, Leicester.)
THREADED CRANK.-We were interested in your suggestion that a Double Arm Threaded Crank should be introduced. Your idea will be considered. (Reply to B. K. Choksi, Karachi, India.)

Enjoying the Summer Programme

The coming of June brings with it the longest evenings of the year, and I hope that the members of every Meccano Club will take full advantage of the opportunities given them of playing cricket, or of enjoying rambles, cycle runs or other healthy outdoor activities. This should be one of the happiest times of the year, and even if rainy weather should compel the abandonment of a carefully prepared outdoor programme, there is always plenty of fun to be had in the club room, where impromptu table tennis tournaments may be held or some other games organised at short notice, while odd moments may be filled in by the overhaul of club material.

Forming a Cycling Section

While reading the many letters I have received from Leaders and secretaries outlining the summer programmes of their clubs, I have come to the conclusion that in many instances insufficient attention is given to the possibilities of cycling, one of the finest and healthiest of all outdoor recreations for boys. The attractiveness of a club cycling run is to be found in the spirit of comradeship that prevails among the members, for to a band of happy Meccano boys, even punctures and other small mishaps incidental to these events lose their capacity for annoyance. Willing hands make light work of any repairs that may be necessary, and little troubles are forgotten in the general enjoyment.

Any club whose members include five or six keen cyclists certainly should form a cycling section, and those who are interested are sure to find their club Leader sympathetic when they explain their wishes to him. If there is sufficient support for the formation of a definite cycling group, he will appoint a senior member to take charge of it, and another may then be chosen to act as secretary. A suitable programme can easily be arranged with the help of a small committee, and if found necessary or desirable, a small weekly subscription may be called for in order to cover the cost of maps, guide books and any other articles that are likely to be useful to the members as a whole. Any surplus remaining should be placed to the credit of a repair fund, and if this is not exhausted at the end of a season, it may be used to defray the expenses of tea and other refreshments on a final run planned on a more generous scale than ordinary events in the programme.
In clubs where the ages of the members of the cycling section vary considerably, there may be a little difficulty in arranging runs to suit everybody. Young cyclists should seldom exceed 20 to 30 miles in one day, but usually it is possible to arrange that older members shall diverge from the route followed by the others to rejoin it later after traversing a greater distance. A further point of importance is that the pace of a run must be accommodated to that of the slower members, for to hurry them would spoil their enjoyment and lead to over-exertion.

Photography on Excursions

Another interesting summer activity is photography. In practically every club there are members who own cameras, and they should be encouraged to learn how to make the best use of them. Where possible, a photographic section undoubtedly should be formed, and if necessary, talks and demonstrations given for the purpose of helping the beginners. Senior members of the club may help in providing these, or the support of an expert who is in-
 terested in club work may be enlisted. In any case, it is very important that the talks should be of a practical character, and should not be mere lectures on what happens when a photographic plate is exposed.

A club showing sufficient enterprise to form a photographic section would find the effort worth while, for it is only natural that enthusiasts should take their cameras with them on club excursions. Keen amateur photographers are particularly desirable additions to cycling groups, for these usually travel further afield than other sections of a club, and their members are given more opportunities for using cameras.

An excellent plan is to award small prizes for the best collections of photographs taken on summer outings, for this develops a spirit of friendly rivalry among the photographers, and encourages them to take the necessary steps to secure good results. An important consideration is that an attractive record of the various activities of the summer session would be obtained in this manner. I hope that this course will be followed in many clubs during the present summer, and wish to remind Leaders and secretaries that I am always pleased to see photographs showing their members at work or at play, and if they are suitable, to make use of them in these pages, particularly when they show what a happy group of boys members of a Meccano Club can be.

To this suggestion in regard to photographs, I should like to add a request that any that appear to be suitable should be forwarded as early as possible. This also applies to accounts of summer activities. The "M.M." necessarily goes to press well ahead of the date of publication and if reports of excursions are not received in good time they may have to be held over until September, or even October.

Proposed Clubs

Attempts are being made to establish Meccano Clubs in the following places, and boys interested in becoming members should communicate with the promoters whose names and addresses are given below :-
London, W. $5-\mathrm{Mr}$. K. M. Blake, Ealing and District Y.M.C.A., Bond Street, Ealing, London, W.5.
Chadwell Heath-T. Frankland, 43, Bushgrove Road, Chadwell Heath, Essex.

Elm Road (Beckenham) M.C.-One of the most interesting of recent meetings was an "How to Make and Do" Evening, when members were shown how to mend taps, carry out simple soldering operations and do other simple tasks. Other meetings included debate, a lecture on Travels in the Western Highlands of Scotland," illustrated by slides kindly loaned by the L.M.S.R., and a demonstration of film development and printing. The chief Model-building Evening was devoted to the construction of representations of objects used on railways, team marks being awarded. Club roll: 28. Secretary: C. Price, 52, Queens Road, Beckenham, Kent.
St. Peter and St. John's (Exeter) M.C.-Interest is centred chiefly in the club's Model Workshop. New machines are installed regularly, and the Hornby Train Layout is worked in connection with the model, which is provided with the necessary sidings. Members knowledge of the principles of engineering is being greatly enlarged by work on the model, and this is to be greatly imvroved by further additions. Club roll: 25 . Secretary: Mr. J. Blaker, c/o 60, Elmside, Exeter.

Attenborough Church Choir M.C.A special display of Meccano Bridges built by members has been held. All types were represented, including
girder and jack-knife bridges, and girder and jack-knife bridges, and one model of special interest was a working representation of the Tower Bridge. At other meetings Games Tournaments have been arranged, the final rounds of these arousing great excitement. Club roll: 30 . Secretary: A. E. Dodd, "Wyville,"
Devonshire Avenue, Long Eaton,

Bell Hill and District M.C.-The most outstanding recent event was a visit to the Ford Works at Dagenham, where members saw the making of the new Ford vans. Special interest was shown in the wonderful machinery installed, all of which is electrically driven, the electric gantry cranes receiving special attention. Club roll 13. Secretary: R. A. Hart, Kingswood Vange, Essex
Braintree High School M.C.-In a special Model-building Contest, Racing Cars had to be built, the marks award ed to the entries depending on the speed attained in trials. Great in genuity was shown by members in
building models that were light and building models that were light and small car that was hauled along in the same manner as an electric hare, and there were fierce arguments as to the legitimacy of this method of propulsion! Work on the club model of a funicular railway continues, and a other meetings members have en ioyed games of Table Tennis and Chess. Club roll: 23. Secretary: P. Allen, St. Edmunds, Bocking, Brain-

Clacton-on-Sea High School M.C.-A series of Model building Contests has been arranged and excellent entries were secured. A special attraction was a meeting devoted to Hornby Train operation on an by Mr. J. L. Howl, Leader of the club, slides being kindly loaned by the L.N.E.R. ; and an interesting visit has been paid to Clacton Post Office, where thorough explanations were given by a Post Office engineer. Club roll: 20. Secretary: D. E. Mills, ad, Clacton-on-S
Chertsey M.C.-A Boxing Contest, Model-building Competitions and Hornby 1 rain Evenings have formed the greater part of the recent programme. Specia attention is now being given to outdoor work, and an excellent programme of cricket and other summer pursuits has been arranged in order to make the outdoor season of 1932 a record for the club. Club roll: 27. Secretary: V. Brown, Arbon Grove Cottage, Lyne, Nr. Chertsey.
Old Charlton M.
Old Charlton M.C. - Talks by members have been given on " Bicycles," ", Airships," "The Parts of a Motor car, " X-Rays" and Chemisiry. The talk on "Chemistry" was illustrated by experiments and was given by the secretary. Special Model-building Evenings have been devoted to the construction of Ships, Cranes and Safes. Club roll: 16 . Secretary
B. Stevens, 53 , Mount Street, Charlton, S.E.7.

A merry group of Meccano boys photographed during a summer excursion. They are members of the Sheffield M.C and this interesting picture was obtained during an enjoyable visit to Manor Park. The club was affiliated in December, 1927, and has pursued a splendidly varied programme under the enthusiastic leadership of Mr. R. Traylen.

Croydon High School M.C.-A special Exhibition was held immediately after affiliation to the Meccano Guild had been secured, in order to arouse interest and to secure new members. More than 200 visitors were greatly attracted by the models on view, showing this by the number of questions they asked in regard to the exhibits. A ctioma Show was a valuable Model-building with the Aeroplane Constryctor Outits has chiefly interested members, and the programme for the future includes outdoor and the programme for the future includes outdoor games and visits to R.F R Blackstone, 64, Montagu Gardens, Wallingto

Gate House M.C.-An Exhibition and Fète arranged at short notice proved very successful. The models shown included an extensive Warehouse, fully equipped with cranes that unloaded trucks arriving aiongside on the club's Hornby Train layout. Fretwork models also were on view, and a bogus Art Gallery, a Punch and Judy Show, and took part, caused much laughter. A substantial sum was collected from the many interested visitors. Photography will form one of the chief activities of the summer months, and special rambles for photographic purposes are being arranged. Club roll: 12. Ingatestone, Essex.
Maidstone M.C.-Mr. T. E. G. Baker has resigned the Leadership, and Mr. R. A special "Meccano Magazine" Evening has been held, members choosing the article they thought most attractive and reading extracts to the club. Automatic Telephone Exchange, and to a special exhibition of film dealing with the making of paper. A talk has been given on "Moidel Railways" and this was followed by a Model-building hibited a representation of the epicyclic gearbox representation of the epicyclic Lanchester cars. Clubroll: 11. Secre tary: Mr. E. E. Stedman, 225 ,
Tonbridge Road, Maidstone.

AUSTRALIA

Melbourne M.C.-Work in preparation has occupied most meetings, the models built including the Meccano Loom, Grandfather Clock, Ship Coaler, Baltic Tank Locomotive, Workshops and Aeroplanes. An extensive Hornby Train Layout complete with the Hornby Control System also was prepared. At other meetings amusing rallway records were played on a
gramophone, and members' stamp collections were inspected and compared, while Mr. Cock, father of a new member, described a shipwreck on The Lizard in 1907 in which he was
zine, has been enlarged, and the extra cost has been ustified by the increase in the demand. Joint meetings are being held with the Hornby Railway Company section. Recent subjects for Model-building have included Motor Cars, Steam Engines and Guns The Library continues to grow in a satisfactory manner. Club roll: 57. Secretary: G. Symons, 6, Holland Road, Peverell, Plymouth.
St. James' (West Streatham) M.C.-Special meetings have been devoted to the construction and trial of model racing cars. Excellent speed records already have been achieved, but efforts are to be made to surpass them. Special competitions for models built with a certain number and variety of parts have been held, and a large number of excellent models were built for the Exhibition. Club roll: 24. Secretary Mizen, 64, Fallsbrook Road, Streatham, S.W.16. Stamford Hill M.C. - The first winter season of work as an affiliated club was marked by a great increase in enthusiasm. The original number of members has been more than doubled and it is now necessary to form sections. All members worked hard in preparation for the Exhibition, large models such as the
Dragline and the Meccanograph being built. Other Dragline and the Meccanograph being built. Other
activities have included Stamp Collecting and Games, activities have included Stamp Collecting and Games, and a Wireless Section is to be formed. Club roll: 25. Secretary: D. W
Stamford Hill, N.16.

Greenock Academy M.C.-In addition to Modelbuilding Evenings, the programme has included visits to a worsted mill, and to the office of the "Grecnock followed. An excursion into the neighbouring hills also proved attractive, and it is hoped that further events of this kind will be arranged during the outdoor season. Club roll: 78. Secrefary: I. D. Leitch, 26, Dempster Street, Greenock, Renfrewshire.

Newcomen (Hull) M.C.-A series of Cinema Displays have been given by Mr. Cook on his Pathè Projector. Mr. Cook has now been elected Assistant Leader, together with Mr. Sharp, and increased enthusiasm has followed a proposal to enlarge the scope of the club's work and to increase membership. Regulat meetings have been spent in Model-building and in Hornby Train operations. Club roll: 9.
H. Acklam, 103, Newcomen Street, Hull.

Plymouth M.C. - "The Gear Box," the club's maga-

Artists of Prehistoric Times-(Cont. from p. 423)

of Boskop man, as the prehistoric ancestor of the Bushman was called, have been dug from the floors of caves in various parts of South Africa, and examination of these has revealed the surprising fact that his brain was larger than that of any other type of human being yet known. Although it is not certain that the possession of a large brain is a proof of ability, it seems clear that Boskop man was
greatly superior to his descendants, a race that is greatly superior to his descendants,
well on the way towards extinction.
well on the way towards extinction.
To a certain extent, the problem of discovering who was responsible for the paintings and rock carvings was responsible for the paintings and rock carvings
of South Africa has been complicated by the discovery of South Africa has in prehistoric times giant hunters inhabited that in prehistoric times giant hunters inhabite
certain districts in which remarkable art treasures have been discovered. Fossilised bones of a representative of this race have been unearthed at Springbok Flats, 80 miles north of Pretoria. None of the bones discovered was complete, but sufficiently large fragments 5 ft 10 in in height and that his head was a little larger than that of the average modern Englishlittle larger than that man. In appearance and in general characteristics he must have been quite different from the ancestors of the Bushmen, and it has been suggested that the race to which he belonged came to South Africa from the north thousands of years ago. It seems to be certain that this race was very intelligent, and it is probable that its representatives had reached a
comparatively advanced stage of civilisation. comparatively advanced stage of civilisation. The Flats in which the remains of this giant
hunter were discovered are in the centre of what is hunter were discovered are in the centre of what is
known as the Bushveld, and for this reason, the known as the Bushveld, and for this reason, the prehistoric people whom he represents have been
called Bushveld men. It cannot be said with called Bushveld men. It cannot be said with
certainty that the Bushveld men created the certainty that the Bushveld men created the
wonderful prehistoric art of South Africa, but wonderful prehistoric art of South Africa, but
further excavations may bring to light new facts that will enable us to solve many of the interesting that will enable us to solve many of the interesting
problems connected with the early inhabitants of problems connected with the early inhabitants of this portion of the continent, and perhaps
of Rhodesia and other regions further north.

Rubber Cored Golf Balls- (Cont. from p. 425) the same speed, and any defects would be revealed immediately. A careful watch is kept for peculiansties of flight displayed by the balls driven from the machine in order that a continual check may be kept on the qualities of the product of the factory
Tests of resiliency also are made, these trials being carried out by means of an air gun that drives balls from a tee at a speed of $150 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. into a heavy pendulum from the movement of which the force of the impact is calculated.

Sample balls from every consignment aiso are tested by means of X -rays. The core of a golf ball is denser than the windings and the cover, fand therefore absorbs the rays more thoroughly. For this reason it shows clearly in an X -ray photograph of a golf ball, and it is easy to detect instances in which it is not centrally placed, or in which it is not of the correct size. So many improvements have been made in the methods of manufacture that to-day it is practically impossible to produce a golf ball with a core that is not truly central,
but X-ray examinations are still carried out in order to ensure that other faults do [not develop

A Camping Holiday-(Continued from page 429)

Camp duties should be divided equally between the different members of the party. It should be made an invariable rule that washing up is done immediately after each meal, otherwise there is a danger that it may not get done at all! If there is not a sufficient supply of hot water to remove grease, this can be got rid of by rubbing with the hard sandy earth to be found on the bed of a stream. As regards drinking water, a small, bright, swift-running stream is generally quite pure, but to be on the safe side it is a good plan to ask the farmer's opinion.
Rain can make matters very unpleasant for the camper unless a few simple precautions are taken. A tent cloth should not be touched when wet, but if rain finds its way in, trouble may be averted by tracing
a line with the finger from the leak to the edge of a line wit
the tent.
Before turning in for the night the guy ropes of
the tent should be slackened off, as these tighten the tent should be slackened off, as these tighten appreciably when wet with dew or rain. This precaution will avoid the possibility of the pegs being pulled up, or the tent cloth torn. Those who are camping for the first time may find it difficult for a night or two to sleep on the hard ground, but it is surprising how quickly one becomes accustomed to this. Clothes worn during the day should be folded up neatly and placed on the ground under the body. helps to make matters more comfortable. Wherever the camp may be pitched, it is absolutely necessary that all litter should be cleared away before leaving, Great attention should be paid to this point, and all rubbish should be buried. If untidy remains of a camp are left, the next campers who come along and ask permission to pitch their Finally the farmer should be visited, and his account, if any, should be settled.

Photography from the Air-(Cont. from p. 433)
process of rapid photography, by which it is possible to reduce the minimum time, from the exposure of the film in the camera until the finished photograph is dropped from the machine, to seven minutes. Usually, however, it is advisable to allow from nine to ten minutes in order to ensure perfect results. After the pictures are finished they are dropped in a special messenger tube with a pocketed streamer, somewhat ned completed photographs can be delivered in field operations method of having the negatives developed and the In this work a special dual-purpose film is used which In this work a special dual-purpose film is used, which fected light. During the Field Exercises of 1930 re aerial photograph was made of the city of Sacramento.

An action photograph from the "Boys' Book of Cricket" by

The negative was developed in the aeroplane and dropped within 12 minutes to a waiting newspape representative. The photograph was reproduced in the newspaper, and this was on sale in the streets in less than an hour.
For the information contained in this article we are indebted to the courtesy of the Information Division of the United States Army Air Corps.

Air Transport-(Continued from page 435)

Marconi-Adcock direction-finder. The first station of this type to be erected has been built by the Marcon Company for the Air Ministry at Pulham, Norfolk The apparatus has been subjected to many tests During a night flight specially arranged by the Air Ministry, 14 observations were made by an aeroplane ransmitting signals from known positions so that a check could be kept. In every case the distance was about 100 miles, and the results obtained by The or ordinary system of wireless direction-finding The ordinary system of wireless direction-tinding was at the time
sorter distances.
Details of the Marconi-Adcock apparatus may Details of the Marconi-Adcock apparatus may
not be published at present, but it may be said that not be published at present, but it may be said that
the station at Pulham is provided with four vertical the station at Pulham is provided with four vertical aerials suspended within lattice wood towers, These are erected at the corners of a square, the diagonal of which bears a special relation to the wavelength to be employed. The bottom end of each aerial is connected to the receiver and radiogomiometer, which is situated in a hut at the centre oltely screened and are non-receptive. Pulam is between 800 m and $1,800 \mathrm{~m}$, but the new system may be used over an even more the new systen may lens. Experiments that extensive band of wave lengths. Experiments tha also of receiving short-wave signals in a satisfactory manner.

Engine's Remarkable History-(Con. from p. 439)
"Cornwall" which, in a similarly altered condition, still remains. "Aerolite" is now principally used to haul "Officers' Specials" as required when inspections are being made. It is now the only re-
maining example in Great Britain of the Worsdellmaining example in Great Brit
The career of this engine is indeed remarkable. If we count the first " A crolite" on the Leeds Northern as a direct forerunner of the present engine, it has had five separate stages of existen-tank with inside cylinders, cylinders, a $2-2-2$ side-tank, a $4-2-2$ two
It is interesting that another locomotive, No. 1619 of the former North Eastern Railway, now withdrawn, was the only engine to which two different systems of compound working have been applied. It was built as a two-cylinder compound on the Worsdell-Von Borries plan in 1892-3. In 1898 it was completely rebuilt as a three-cylinder compound on the Smith system, and was the first locomotive to incorporate system, of course, is the one that with modifications, system, of course, is the one that with modifications, and is now largely employed on the L.M.S.R.

New Meccano Models-(Continued from p. 455)

table is rotated can also be altered, this being carried out as follows. The table, which may consist of a sheet of stiff cardboard or plywood, is secured to a $3^{\prime \prime}$ Pulley Wheel mounted on an Axle journalled in the frame. A second $3^{\prime \prime}$ Pulley and a $2^{\prime \prime}$ Pulley are mounted on the lower end of the Rod. An Axle is journalled in the centre of the Flanged Plate at the other end of the frame, and this carries 1° and $1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Pulley Wheels. An endless length of Cord is used to couple either of these Pulleys with the Pulleys on the table shaft, the resulting slackness being taken up by means of a spring-mounted jockey pulley. A $1^{\prime \prime}$ Loose Pulley is mounted on a童" Bolt secured to a cross-shaped arm composed of $3 \frac{1}{2}^{\prime \prime}$ and $1 \frac{1}{2}{ }^{\prime \prime}$ Strips. The arm is pivoted to an Angle Bracket secured to the frame, and a Spring is mounted in the position shown in order to keep the Cord under tension.
The Rod carrying the $1^{\prime \prime}$ and $11^{\prime \prime}$ Pulleys is fitted with a 57 -teeth Gear Wheel that engages with a Worm mounted on the Crank Handle shaft and also meshes with $\frac{1}{1 "}$ Pinions secured on the pencil arm and carriage oscillator shafts respectively. It will be seen that a length of elastic 2 is attached to the pencil arm and also to a $5 \frac{1}{2^{\prime}}$ Strip secured to the frame in an upright position. The elastic serves to keep the pen arm in contact with the Threaded Pin secured to the Bush Wheel on the oscillator shaft.

The Meccanograph contains the following parts :1 of No. $1 ; 6$ of No. $2 ; 1$ of No. $3 ; 4$ of No. 5 ; 1 of No. $6 \mathrm{a} ; 4$ of No. $8 ; 1$ of No. $10 ; 11$ of No. $12 ;$
2 of No. $15 ; 2$ of No. $16 ; 2$ of No. $17 ; 1$ of No. 18a; 1 of No. 19; 2 of No. 19b; 1 of No. 20a; 1 of No. 20b; 1 of No. $21 ; 2$ of No. 22; 1 of No. 22a; 1 of No. $24 ;$
2 of No. $26 ; 1$ of No. 27a; 1 of No. 32; 10 of No. $35 ;$ 2 of No. $26 ; 1$ of No. $27 \mathrm{a} ; 1$ of No. $32 ; 10$ of No. 35 ;
52 of No. $37 ; 9$ of No. $37 \mathrm{a} ; 11$ of No. $38 ; 1$ of No.
$40 ; 1$ of No. $43 ; 1$ of No. $44 ; 2$ of No. $45 ; 2$ of $40 ; 1$ of No. $43 ; 1$ of No. $44 ; 2$ of No. $45 ; 2$ of
No. $48 ; 2$ of No. $52 ; 2$ of No. $53 ; 3$ of No. 59 ; 2 of No. $62 ; 2$ of No. $111 ; 4$ of No. $111 \mathrm{c} ; 2$ of No. $115 ; 1$ of No. 125; 2 of No. 126a.

Level-Crossing Gates

The model level-crossing gates shown in Fig. 6 can be incorporated in a model railway layout with very little modification. The operating lever could be signal cabin and the gates arranged to work automaticsignal cabin and the gates
ally with the line signals. The model is very simple to build, and the main The model is very simple to build, and the main constructional points will be clear from the illustration.
The operating cord, which is connected to the pivoted The operating cord, which is connected to the pivoted
lever, is passed once round the groove of each $1^{\prime \prime}$ Pulley secured to the gate pivots, the cord being taken Pulley secured to the gate pivots, the cord
round the Pulleys in opposite directions.
round the Pulleys in opposite directions.
Parts for the Level Crossing Gate are as follows :Parts for the Level Crossing Gate are as follows :-
2 of No. $1 ; 9$ of No. $2 ; 10$ of No. $5 ; 4$ of No. $8 ; 4$ 2 of No. $1 ; 9$ of No. $2 ; 10$ of No. $5 ; 4$ of No. $8 ; 4$
of No. $10 ; 4$ of No. $12 ; 4$ of No. $16 ; 4$ of No. 22 ; of No. $10 ; 4$ of No. $12 ; 4$ of No. $16 ; 4$ of No. $22 ;$
8 of No. $35 ; 35$ of No. $37 ; 4$ of No. $38 ; 1$ of No. $40 ;$ 8 of No. 35 ; 35 of No. 37 ;
4 of No. 48 a ; 1 of No. 52.

Floodlights on Photography"

"Floodlights on Photography" is the title of an attractive and interesting booklet just issued by Burroughs Wellcome \& Co. The striking cover in
blue, black and aluminium carries illustrations of floodlighting effects photographed during the Faraday floodighting effects photographed during the Faraday photographs showing the effects to be obtained by photographs showing the effects to be obtained by
toners and stains. The booklet deals with methods of obtaining correct exposure by means of the "Wellcome" calculator, which gives the required time by a single turn of a disc. Development of films in ordinary light by the use of "Tabloid" desensitiser and "Kytol" developer, and the improvement of dense or underexposed negatives by safe and simple methods of reduction or intensitication, are among the other subjects dealt with.
A copy of the booklet will be sent free to readers who apply, mentioning the Mox No. 213A, London.

AND ITS HIDDEN BEAUTIES

OPENING THE BOOK OF NATURE

INmany respects June is the most delightful month of the year in this country. The days are long, and in a normal summer-which unfortunately we have not had latelythe weather is fine and warm, but without the intense heat that July and August often bring. Many of the wild flowers have come and gone, but most of the trees are in their full glory, clad in a coating of green of wonderful freshness and purity.

The craze for ramblingor " hiking," to use an ugly and unnecessary word that appears to have forced its way into general use-is a splendid thing in many respects, but there is a danger that it is becoming organised into what one might call "point-to-point" walking. To start off in the morning with the main object in view of reaching another point so many miles away before nightfall results in plenty of fresh air and exercise, but often many of the real beauties of the countryside are missed in the process. At the end of such a day the ramblers will be able to tell you a good deal about hills and mountains, rivers, lakes and waterfalls, but enquiry will show that they have completely missed the less spectacular beauties.
The only way to really enjoy these beauties and to learn something about them is not to scurry past along road or footpath, but to sit down and quietly observe them. This does not necessitate a lazy outing by any means, for plenty of exercise may be obtained in reaching some stretch of quiet country where all traces of the town are left behind. When this destination has been reached, however, the walking has served its purpose, and one settles down to wander quietly about, drinking in the beauty of the scene.

A great deal of real enjoyment is to be had in this
manner without any definite object; but a still better plan is to cultivate a special interest in some particular feature. Books on nature study are now so plentiful and cheap as to be within the reach of everybody. The best possible scheme is to select some section of natural history, read it up at home, and then go out into the wilds and see for oneself the things that the book describes and illustrates. There is variety enough for everybody-birds, beasts, trees and flowers; while if none of these appeals, then there are the everchanging clouds above with their special weather meanings, and the rocks below in which may be read something of the story of the Earth. Whichever branch of study is taken up will provide the keen interest of recognising out in the open features about which one has read in books. One may have looked at these things with unseeing eyes a thousand times before, but to look at them for the first time with intelligent knowledge of their meaning gives one something of the thrill of the discoverer.

It is surprising how even a small amount of knowledge of some branch of natural history increases the interest in almost any ramble. It may be true in one sense that " a little learning is a dangerous thing," but it is also true that a little learning often leads to a little more, and finally to real knowledge. So long as the book of Nature remains closed it arouses little interest; but once the effort has been made to open it, even a little way, the riches within pour forth in an inexhaustible stream for those who remain to read.
Next month we shall point the way to the discovery of some of the hidden beauties of the outdoor world.

Longer Runswith Heavier Loads

Hornby clockwork and electric trains are the best that you can buy. The Locomotives are built for heavy loads and long runs ; the Rolling Stock is strong, smooth running and durable; the Accessories are realistic and correct in proportion. Every article is made of the finest material, by British craftsmen. It will be a great moment in your life when you have a Hornby Train Set, and are able to play the great game of railways. Nothing could give you greater pleasure,
there is no other game you'd be as keen to play.

No. 1 TANK GOODS SET

No. 1 SPECIAL GOODS SET

No. 1 SPECIAL PASSENGER SET

No. 2 MIXED GOODS SET

No. 2 SPECIAL PULLMAN SET, L.N.E.R.

Tell Dad what you think of these fine models of modern engines and rolling stock. Tell him what every boy knows-that Hornby Trains are the best, strongest and most efficient model trains in the world!

PRICE LIST

clockwork train sets
Mo Goods Set
Mo Passenger Set
5/-
... 5/9
M1 Passenger Set 9/3
M1 Goods Set 10/-
M2 Passenger Set... 10/9
M3 Tank Goods Set $15 /-$
No. 0 Passenger Set 17/6
No. 0 Goods Set 18/6
No. 1 Goods Set 25/-
No. 1 Tank Goods Set $\ldots . \quad \ldots \quad$... $\quad .$.
No. 1 Passenger Set 28/6
No. 1 Special Goods Set 32/6
No. 1 Special Passenger Set 35/-
No. 2 Mixed Goods Set ...
40/-
Metropolitan Train Set C
$45 /-$
No. 3C Set Riviera "Blue" 62/6
No. 2 Special Pullman Set 67/6
No. 3C Pullman Sets, " Flying Scotsman,", "Royal Scot," "Cornish Riviera," or "Continental Express" $\quad .$.

ELECTRIC TRAIN SETS (6-VOLT)
No. 3E Set Riviera "Blue"
No. 3E Pullman Sets, " Flying Scotsman,",
"Royal Scot," "Cornish Riviera,"
or "Continental Express
85/-
Metropolitan Train Set L.V.
85/-

HORNBY TRAINS

Branch Notes

West Dulwich and Herne Hill.Sidings have been added to the layout and at certain meetings new members have been allowed to gain experience in the simple operation of trains, timetable working being suspended for the purpose. Other meetings have included an interesting lecture by Mr. E. P. Fisher, Chairman of the Branch, on the measures that have made travel on British railways safe, and a
Branch library evening, when members read extracts from books on railway working. Secretary : J. Nunn, 70, Herne Hill, S.E. 24

Neasden.Several experimental layouts have been tried and as train working was most satisfactory when double track was employed, no sections of single track are included in the layout now in use. The main terminal station is to be covered and visits are being made to London termini in order to study train operation and to obtain hints for realistic details to be incorporated in the Branch layout. There is room for more members, and a magazine will be produced when the Branch roll is more satisfactory. Secretary: J. V. Reynolds, The Grove, Neasden Lane, London, N.W.10.

Firxton Wesleyan.-Enjoyable track work has been carried out on the continuous layout with three sidings adopted after experiments with various types. A lecture on the Morse Code has been given by the wireless operator of a liner, and a visit paid to the sidings and signal cabin of the local station, the Stationmaster himself kindly acting as guide. Secretary : J. P. Haworth, " Woodthorpe," Rothiemay Road, Flixton, Nr. Manchester.

Ashleigh (Bexley).-At track meetings systems of operation leading up to regular timetable working have been devised and carried out. The most interesting recent event was a visit to the L.N.E.R. Locomotive Depot at King's Cross, where the repair shops were inspected. Members also examined a four-cylinder "Atlantic" engine, No. 3279, and other locomotives, and watched the operation of the coaling plant, being greatly impressed by the speed with which locomotive tenders were
filled. Secretary: A. F. C. Harmer, Ashleigh," Manor Way, Bexley, Kent. Wimborne Grammar School.-The Branch rolling stock has been increased by the addition of a Fish Van, a Banana Van, two Tank Wagons and other vehicles, and regular working of goods trains is carried out. An electric light has been placed in the tunnel-for use in the event of accident !and six additional signals have been installed in the Shunting Yard. Dilapidated wagons have been ruthlessly scrapped. It has been

AUSTRALIA

Sydney.-Regular track meetings have been held, and excellent work carried out on a non-continuous layout. A specially interesting event was a lecture by Mr . Jones on "Early Australian Railways," this being well illustrated by means of lantern slides and photographs. The Branch arranged a Hornby Railway Display at an Exhibition organised in aid of a fund for providing Christmas cheer for patients in the Sydney Children's Hospital. The extensive track was partly electrified and operations on it, and in the wellplanned goods yard, aroused great interest among the 7,000 visitors. Interesting visits have been paid to the Locomotive Sheds at Eveleigh and the Gas Works at Mortlake. Single line working on a non - continuous layout with four loops and two terminal stations has proved very interesting at ordinary track meetings. Secretary: T. Watson, 595, Parramatta Road, Leichhardt, N.S.W.

Branches in Course of Formation

Leeds-R. Bromby, 21, Alexandra Grove, Hyde Park, Leeds.
Leicester-H. Mansfield, St. Albans, Westminster Road, Stoneygate.
London, S.W.12-J. D. Hulbert, 64, Sarsfeld Road, Balham, S.W.12.
London, S.W. $20-$ D. Fielden, 117, Bushey Road, Raynes Park, S.W.20.
Prescot-James Reynolds, " Nirvana," Eccleston Park, Prescot.
Rochdale-S. Dearden, 33, Moorland Avenue, Milnrow.

Branches Recently Incorporated

215. Neasden - J. V. Reynolds, The Grove, Neasden Lane, N.W. 10
216. Normacot-G. L. Shaw, 11, Hamilton Road, Longton, Stoke-on-Trènt.
217. Cannock House School-D. Wynbergen, Cannock House School, Eltham.
218. Heath Mount-J. S. Battersby, " Kingswood," Manchester Road, Fairfield, Manchester.
219. Fallowfield Baptist Life Boy.H. Nelson Lightbown, 9, Albion Road, Fallowfield, Manchester.

XLIV.-AN ANGLO-FRENCH LAYOUT

IF a miniature railway system is to appear like a satisfactory reproduction of the real thing, a consistent policy must be observed in regard to the various locomotives and rolling stock. Further, practices that do not exist in reality should not be allowed on a model railway, except where circumstances make them absolutely necessary. This is particularly the case where a certain group, or section of a group, is takén as a prototype. If, for instance, the locomotives and rolling stock used on a particular line are of L.M.S.R. type and colour, the observer is able to see at a glance which group is the railway owner's favourite, and therefore he can reasonably expect to find that the operationoftheline generally will be conducted according to the practice of the real railway.

This does not mean that model railway owners should necessarily confine themselves to certain types of locomotives and rolling stock.
There are many who are interested in railways in general, rather than in one group or section ; and their ideas are expressed by the presence on their miniature railways of a miscellaneous collection of locomotives and coaches in the colours of various groups. Very often it is possible to explain the existence of this varied collection by " joint working" into a certain station, or over a particular stretch of line. There are many instances of this in real practice, and several examples have been mentioned in these pages from time to time. Other model railway owners go further, and plan their layouts to represent imaginary joint systems, thus making possible through services and connections of a particularly interesting character.
Striking developments of this idea are made possible from the fact that the Hornby Series includes examples of Continental locomotives and rolling stock. This opens up great possibilities, and directs attention to a scheme that was projected many years ago and has been revived at intervals since ; namely, for a Channel

Tunnel to afford through communication by rail between England and the Continent. Although this tunnel scheme has never materialised, and at present does not seem likely to do so, this need not hamper the model railway enthusiast. If he possesses both British and Continental type locomotives and rolling stock, and wishes to put into operation a reasonable scheme for using them, he may assume that the Channel Tunnel is constructed, and avail himself of it accordingly. The actual layout adopted will of course depend on the space and material available, and on the ideas of the individual operator. The scheme we are now going to describe is a general one that can easily be modified to suit almost any special conditions and requirements.

We will assume that the Channel Tunnel itself runs between Dover and Calais, and that although this section is necessarily worked by electricity, the Southern Railway of England and the Chemin de Fer du Nord of France still retain steam locomotives for the haulage of the trains over their systems. The S.R. electrification scheme that is now being carried out to Brighton need not worry us, as we are only concerned with the Eastern section between Victoria and Dover. Therefore, such famous trains as the "Golden Arrow" can be operated on both sides of the Channel by Hornby steam-outline No. 3 Locomotives, the famous "Lord Nelson" being the S.R. engine, and the well-known "Riviera" Locomotive representing the "de Glehn" compounds that do such remarkable work on the Nord system.

The difference between the English and the Continental rail gauges is only fractional, so that vehicles built to British standards can be operated over French metals, as was the case during the War, when numerous English locomotives went across to "do their bit." As the Continental loading gauge is more generous than ours, however, vehicles for through services would have
to conform to our standards, unless a complete reconstruction of the S.R. were carried out. Assuming this question is settled in a satisfactory manner one way or the other, we make up the "Golden Arrow" for its through run from London to Paris, using Hornby No. 2 Special Pullman Coaches. These, of course, must bear the Name Boards with the title of the train upon them.

For the run to Dover, as mentioned previously, a Hornby " Lord Nelson" is employed. An up-to-date touch will be to fit the engine with smoke deflectors as suggested in these pages last month. One of the accompanying photographs shows a train on its way hauled by an engine so fitted, and the effect of the addition is very striking. As the locomotives are changed at Dover, the layout should be adapted to enable the operations involved to be carried out with the minimum of delay. This applies also to Calais, and in the photos shown that represent this station, the central road will be noticed to enable the various locomotive movements to be performed easily. This will be found very useful also in the carriage and wagon marshalling operations that will be required from time to time.

On arrival at Dover the "Lord Nelson" gives way to an electric locomotive, proceeds to the engine sheds, and waits for the arrival from the Continent of the train on which its return working will be made. An electric engine of the wellknown Hornby Metropolitan type may be used for the next stage of the journey. This, we will assume, belongs to the Channel Tunnel Company, an international concern responsible for the operation of the tunnel section and therefore providing the motive power. Although it would be more realistic if an actual electric engine were employed, there is no reason why a clock-work-driven Metropolitan engine should not be used by those who prefer it, or who are unable to have an electrically-operated section. In either case an interesting step will be to fit up the coaches for electric lighting, as suggested recently in the Hornby " In Reply" columns. It is probable, too, that complete lighting would be installed throughout the tunnel, so that
this also is a suggestion for those who decide to adopt the scheme.

The actual tunnel section might well be arranged as suggested in these pages in September last year, when the Metropolitan Railway and the reproduction of some of its chief features received attention. If a permanent layout on a raised structure is possible, the tunnel section might be fitted up on additional shelving underneath the main track. On the other hand, if a portable track is a necessity, such an elaborate scheme is scarcely possible, but

This photograph shows the "Golden Arrow " on its way to "Dover." For this first part of its through journey it is hauled Golden Arrow" on its, way to "Dover." For this first part of its
by a "Lord Nelson " Locomotive fitted with smoke deflectors. the tunnel section mảy be arranged quite well if its presence is masked satisfactorily by the use of scenic and other effects. Individual enthusiasts will be able to decide upon the scheme to be adopted as a solution of the problem upon their own particular systems where special conditions may obtain. After traversing the tunnel, the "Golden Arrow" regains the daylight at Calais, where the layout will most likely be similar to that at Dover. As a matter of fact, where space is limited and the layout has to be arranged on the oval continuous plan in order to obtain sufficient length of run, the train may be dealt with twice at the same station, representing Dover and Calais at successive stops. The Channel Tunnel Company's engine is then

Another view of "Calais." The electric engine has been detached and is proceeding to its depot by means of the centre road while the "Nord " 4-4-2 makes ready to depart for "Paris." detached and proceeds to the depot or siding where it will lie by until a further turn of duty.

The next engine to be used is the Hornby "Riviera" 4-4-2 which, with its brown colouring, large bogie tender and typical Continental boiler mountings, has a particularly fascinating appearance. This may be still further enhanced by the fitting of smoke deflectors. These are attached in the same way as on the Hornby L.M.S.R. and S.R. engines previously described, but the shape of the sheets, as shown in the accompanying photographs, is different in detail, the front top corners being cut off at an angle and the rear corners rounded. To complete the distinguished appearance that they give to the engine, they may be picked out as suggested in the illustrations, and the word "Nord" painted on them in small letters.

The journey to the French capital is then completed with the Nord locomotive in charge of the train.

Honly Seriss \because Rails, Points and Crossings :- Honly Serico
 Hornby Rails, Points and Crossings are designed to meet the most exacting requirements of model railway enthusiasts. The variety of Points, left-hand

 and right-hand turnout, together with the Crossings, make possible an almost endless number of realistic and railway-like layouts. The adaptability of the Rails, Points and Crossings is well shown in a special booklet."How to Plan your Hornby Railway," which is obtainable from your dealer, price 3d., or from Meccano Limited (Dept. A.B.), Old Swan, Liverpool, price 4d. post. free.

Suggested Hornby Train Improvements

RAIL MOTORS

We have referred on several occasions to the possibilities of branch line working on model railways, and given hints as to the best schemes of operation. Several readers have sent in suggestions recently for the addition to the Hornby Series of steam rail cars, of such types as the "Sentinel-Cammell and "Clayton steam coaches. These are certain extent on our railways, but they cannot to a certain extent on our railways, but they cannot yet be considered to be ingenerab introduced in the Hornby models are not likely to be introduced in tie near future. In the meantime, it is quite possible car model from existing material.
The necessary components are a Metropolitan Coach with guard's and luggage accommodation and a Tank Locomotive of the former No. 1 type, which may have been replaced by an engine of more up-to-date pattern. in a few details, and finally modify in a few details, and finally
couple them up to form a striking couple them up form a striking and useful unit for branch line
traffic or for serving suburban tratio or for serving subh peristations between the rush peri-
ods" when the normal train service is thinned out somewhat. As thus made up the rail motor reproduces
the type of vehicle in which the coach may ise permanently coupled to, or incorporate a steam locomotive of small proportions. Considerable attention has been de-
voted to them in actual practice voted to them in actual practice
at various periods, and they are at vainous periods, and they are
certainly very effective for model purposes. roof is work is simple. The coach four brass ventilators. The bogie at the end remote from the guards' compartment is removed and the couplings and buffers are taken off. With the removal of the buffers, the coach end will be free, and this should be replaced back to front so that the turned-up tongue of metal at the bottom, on which the coupling was fixed, points outward. are used to secure the end in place of the buffers that have been taken off. The metal tongue just referred to is now gently bent out flat with pliers, so as to be level with the floor of the coach. The underframe truss rods or tie bars are now moved from their original position in the centre of the coach so as to be near the end where the bogie has been removed. The bolt holes on each side opposite the bogie pin hole are exactly in the right place to allow the truss rods to be attached in their new position without trouble. This being done, the coach roof may now be replaced.
The Locomotive now requires attention. The buffers and the coupling at the rear end are removed, and the bunker back and cab roof are taken off after prizing up the lugs securing them. The knobs on the brake and reverse rods are removed, and by means of judicious bending, the rods themselves are caused to project sideways through the upper part of the openings in the cab sides. Care must be taken to see that the operation of the controls is not impeded. This arrangement of the rods is necessary because, when the unit is assembled, the Coach is very close to the rear of the engine. The brake rod will of course project on the left-hand side, and the reverse rod on the right.
The after parts of the bunker side sheets are now bent at right angles, the bend being made so that the lugs securing the bunker to the frames at this point are intact, the angle of the bend corresponding with the end of the lug. Some careful cutting of the frame of the engine is now necessary in order to shorten it at the rear end. The buffer beam is flattened out, and a cut is made along the bend in the side of the footplate until a point $\frac{b^{\prime \prime}}{\prime \prime}$ behind the now shortened bunker is reached. The turned-down portion of the frame is removed so that we now have the flat floor

An interesting corner of a miniature railway system. This is laid upon a raised foundation and some interesting effects in scenery and accessories are incorporated.
it will pass. The completed unit is now ready to
run and will traverse 2 ft . radius curves and points run and will trave

REPRODUCING PULLMAN DETAILS

All readers are familiar with the Hornby No. 2 Special Pullman Coaches that reproduce in such a satisfactory manner the characteristics of the real vehicles. Pullmans are now in extensive use in this country. They were introduced in 1874 on the
former Midland Railway, but the early vehicles, former Midland Railway, but the early vehicles, although a notable advance upon the ordinary coaches of the day, could scarcely be compared with the accom-
modation afforded in the magnificent Pullman saloons modation afforded in the magnificent Pullman saloons of to-day. These are luxurious steel panelled vehicles,
and it is this type of coach that the Hornby Pullmans and it is this type of coach th
so satisfactorily represent.
so satisfactorily represent.
There are, of course, a large number of earlier Pullmans in use in which the vertical matchboarding of the wooden lower panels is a feature, and some enthusiasts have expressed a wish that we should reproduce this panelling and several other features by means of transfers. We are not likely to take this step owing to the expense that would be involved in the preparation and application of the necessary transfers, but the following hints may be of use to
those who are prepared to take a little time and care those who are prepared to take a litt
in order to attain the desired effect.
The lining on the lower panels of the real vehicles of matchboard construction has the appearance of being broken up by the joints in the boards when viewed at certain angles. This effect can be readily
obtained with the Hornby No. 2 Special Pullmans, obtained with the Hornby No. patience being the chief requirement rather than patience being the chief requirement rather than
skill. The lower panels should be faintly marked in pencil with vertical divisions $3 / 32$ nds of an inch
apart, taking care that the vertical parts of the gold lining do not correspond with the markings. If the lines
This being done, a T-square is applied to the lower edge of the coach side, the blade passing upward across it. Fine lines are now carefully drawn from the waist rail to the bottom edge of the coach with Indian ink. These lines will cut through the horizontal lining, of course, and if drawn sufficiently finely, they may be carried through the crests and the name panel transfers. A ruling pen is desirable for this work, but quite good results may be obtained with a mapping pen, or even an ordinary fine nib. Where the latter are used it may be better not to run the lines across the crests and name panels, for the line may come out too thick, but this depends upon individual choice and ability. When this has been carried out on both sides of the coach a very pleasing
reproduction of the matchboard reproduction of the I
effect will be obtained.
Indian ink is again required for another little task that is quite worth the trouble. The raised beadings that are neatly carried out on the Hornby Pullman sides, and round the windows, may be very much improved if their edges, both vertical and horizontal, are thinly lined; this gives a shadow effect that results in the beading being thrown into sharp relief in
a very striking manner. The a very striking manner. The
appearance of the characteristic large oval windows in the vestibule also is improved if their raised frames are carefully painted with gold paint, and this should be applied to the two horizontal bars across them. The forly apply gold paint to the vestibule sides immediately below the door openings, thus giving a gold strip about $\frac{8}{8}$, the appearance of a brass-bound step into the vestibule.
The general effect of these tractive, and the owner of severa tractive, and the owner of several Pullmans is not likely to be
has finished each one of them in satisfied until he
a similar manner.
BRAKE AND REVERSE RAIL FITTED FOR CONTROL.-This suggestion has been put forward several times, but we scarcely think that a great It would certainly be convenient to such able to brake or reverse the locomotive from the lever frame, but the fact that the engine when once stopped would have to be re-started in the usual way reduces the practical advantage of the scheme. (Reply to H. Dodd, Bulwell.)
L.N.E.R. ARTICULATED BOOSTER LOCOMOTIVE - A model of this latest L.N.E.R. development would certainly be novel, but there are considerable diffi culties in the way of manufacture. In addition, as the type is not yet typical of British practice, only a small demand is likely, but if such engines become more common their introduction would be considered. (Reply to V. Swinstead, Durham.)
SNOW PLOUGH FOR ATTACHMENT TO LOCO-MOTIVES.-These fittings vary in shape and size, and a standard design would scarcely be satisfactory. The practical value of such an accessory is small, and those who require a snow plough of this kind may
construct one from cardboard or tinplate. (Reply fo construct one from
F. Smith, Hawick.)
YELLOW DISTANT SIGNALS.-We have already considered the introduction of distant signals with yellow arms and with an orange spectacle glass in place of the usual red one. This scheme of yellow and before is undoubtedly coming into the matter in band. (Reply to R. Massam, Warwick.)

XLII.-TOPICAL TRAIN SERVICES

FROM time to time we have made suggestions in these and the "How to Get More Fun" pages regarding layouts representing portions of various actual systems, and the train services that may be operated on them by means of Hornby Locomotives and Rolling Stock. These suggestions are usually found very welcome by our readers, particularly those who favour the practice of a certain group or section, but who live a long way from it, or at any rate from its main lines. They are thus hardly able to form a true idea of its chief characteristics.

With the approach of the summer months the question of holidays naturally demands more and more attention. The railway companies are making great efforts to attract all the traffic possible, and some remarks upon holiday traffic in general will be of interest.
Britain First" is a familiar exhortation, and the railways certainly do their share in inducing people to travel in their own country, and in order to avoid excessive pressure in August, to take their holidays as early as possible. Hornby Railway owners who favour the various suggestions made in this article will be well prepared to reproduce on their own lines some interesting operations if a wet afternoon should put a stop to the outdoor activities customary at this time of the year.

The Great Western Railway demand particular attention for they have long claimed to be " The Holiday Line." Their enterprise in providing speedy services to the West generally has resulted in their chief trains becoming extremely heavy, and in order to keep time in these circumstances the engines are of the most advanced design. Taking this point alone, the Hornby Railway owner who favours the G.W.R. is very fortunately situated, for both the "Caerphilly Castle" and "County of Bedford" Locomotives of the Hornby Series are fitted with the latest improved mechanisms. They can haul heavy trains, and are capable of running

The arrival of a "special" at a miniature terminus. Numerous trains of this kind are run for different

long distances at satisfactory speeds as do their G.W.R. prototypes, provided, of course, that the usual attention is given to locomotives, track and stock to secure the best running. Their typical-Belpaire fire-boxes, domeless boilers surmounted by safety valve casings, and other features, make these engines as distinctive among miniature locomotives as are the productions of Swindon in actual practice.

Of the many well-known trains operated by the G.W.R., the "Cornish Riviera Express" and the Torbay Limited" have the most imposing titles. These are therefore included in the series of Hornby Train Name Boards, so that miniature reproductions of these famous expresses may be properly indicated. Of the more ordinary express trains-as far as such a term applies to the speedy Great Western servicesthose serving " Paddington, Exeter and Plymouth" a n d Paddington and Bristol" can also be run correctly labelled, for these destinations are available.

The "Cornish Riviera Express" is so well known that little further reference to it is necessary. A layout can hardly be considered to represent the G.W.R. main line to the West that does not include a miniature " Limited," as the Great Western men call it, among the trains operated over its tracks. A very interesting account of the train is given in Mr. C. J. Allen's book " Famous Trains," to which those requiring information should refer. An interesting possibility for experiment will probably occur to those who desire to run their miniature trains in such a manner as to reproduce as far as possible the operation of the real one. This is in connection with the practice of carrying " slip" portions for different destinations, which are detached without stopping at various junctions-in the case of the "Limited," at Westbury, Taunton and Exeter. As this practice is not nearly so common now as it once was, a special device in miniature would be out of the question, but we
appearing on the lower panels of these vehicles. This may be done easily, using brown enamel of a suitable shade. The coaches then, with their cream upper panels and roofs, gilt waistline and window frames, and plain brown lower sides, will look distinctive and reproduce reasonably well the G.W.R. coach livery.

The Roof Clips should be attached to the coaches, and if these are painted brown also this will be an additional characteristic. One of the accompanying illustrations shows vehicles dealt with in this manner, the train representing the:
Torbay Limited" running on the section of line between Dawlish and Teignmouth. This runs along the edge of the sea, and the reproduction of this and a few other features as far as possible, will be found very fascinating, and will add considerably to the true-to-type character of the system. The use of Hornby Cuttings and Tunnels as shown in the photograph referred to gives a very effective result and obviates the necessity for the home construction of these features, which in a portable layout is something of a problem.

Followers of the Southern Railway will urge that their line, too, deserves attention in connection with holiday transport. This is certainly so, as a visit to their London termini during the summer months will speedily show. The Western Section traffic from Waterloo is heavy and to a certain extent competitive with the
are sure that many ingenious readers will see what they can do in the matter. Individual operators have their own ideas, and what may be considered a suitable method on some layouts would hardly fulfil the conditions of others.

Then in the case of a miniature "Torbay Limited," additional interest is afforded by the fact that the train is made up of articulated stock-an introduction that occurred rather suddenly on the G.W.R. in 1925, although the principle had long been employed on the L.N.E.R. The scheme mentioned recently in the "M.M." for the articulation of Hornby No. 2 Saloon Coaches may be employed for the similar No. 2 Pullmans that we may use to represent G.W.R. stock. Where readers are keen on having details as correct as possible, a suggesand the No. 2 Special Pullman Coaches and the Locomotive are excellent reproductions of their prototypes.
G.W.R., the "Atlantic Coast Express " being the principal S.R. morning train to the West. In this case also the necessary Name Boards are available in the Hornby Series, so that this great train may be represented on a layout. In addition, a miniature "Bournemouth Belle," composed exclusively of No. 2 Special Pullman Coaches with the appropriate title applied, will give an air of distinction to any line that favours Southern practice.

The Kent coast traffic gives S.R. officials something to cope with, and in running such trains in miniature the Hornby No. 2 Special Locomotive, which is a true-to-type reproduction of the real " L1" class engines, comes into its own. One of the accompanying photographs shows an engine of this type dealing with a heavy Pullman train, for the Southern Railway operate a large number of these ber of these
crowds, tempted no vehicles. For handling exceptional crowds, tempted no
doubt by cheap bookings and special facilities, suburban stock may be pressed into use during the times of heavy traffic. In this connection it would be distinctly interesting to use a " set train" of No. 1 Coaches, closecoupled as suggested last month. Such a train would form a useful unit for dealing with the traffic, as the carrying capacity is large in proportion to the length and weight of the train. The running qualities would naturally

An interesting touch is given by this photograph. Hornby Cuttings and Tunnels are effectively used and given by this photograph. Hornby Cuttings and Tunness
the train is represented as running along the edge of the sea. be improved by the fitting of Mansell wheels, though with suitable lubrication the pressed steel type are quite satisfactory. The permanent coupling, and therefore the operation of such a train as a complete unit, makes it easy to handle at terminals, and where trains follow each other at short head-ways-as they must do at busy timesthis is a valuable feature.
There is naturally a great deal of scope for the running of numerous "specials," "second portions" and "reliefs," and the various means adopted of indicating these trains for the guidance of the staff have been referred to several times in the "M.M." Trains run in connection with topical events at seaside towns may be operated, and imagination may be brought into play here to devise reasons for them and to arrange suitable decorations for the engines employed. Although it is customary to take a bold line in this direction in these times, care should be taken not to overdo such effects.

HORNBY ACCESSORIES

HORNBY SERIES

(HORIZONTAL TYPE)
This special rail is designed on an entirely new principle. It has independent catches for reversing or stopping the means of one control lever. Price 1/6

TUNNEL No. 0 (Straight) Length 6 in., width $6 \frac{1}{6}$ in. TUN Price $1 / 6$
TUNNEL No. 1 (Straight) Length $711 / 16 \mathrm{in}$. Width 61 in . (as illustrated) TunNerice 2 TUNNEL No. 2 (Straight) Length $15 \frac{1}{6}$ in. Width

MODELLED MINIATURES No. 1 These splendid STAFF are splendid models, which colours, add the enamelled in realism to Hornby Station Platforms. Price 2/-per set.

MODELLED MINIATURES No. 21. TRAIN SET
This new miniature train set is a very attractive model. It includes diecast Locomotive, Wagon, Crane Truck, Lumber Wagon and "Shell" Petrol Tank Wagon.

TRAIN NAME BOARDS

These name boards are for No. 2 Pullman Coaches and add greatly to the realistic appearance of the coaches. Details are as follows

No. 1 The Flying Scotsman.
No. 2 The Scarborough Flier
No. 3 The Royal Scot
No. 4 The Merseyside Express,
No. 5 The Golden Arrow
No. 6 The Bournemouth Belle.
No. 7 Cornish Riviera Express
No. 8 Torbay Limited Express,
No. 9 King's Cross, York and Edinburgh
No. 10 King's Cross, Edinburgh and Aberdeen.
No. 11 London (Euston) and Liverpool (Lime Street)
No. 12 London (Euston) and Glasgow (Central).
No. 13 Victoria and Dover
No. 14 Waterloo, Salisbury and Exeter
No. 15 Paddington, Exeter and Plymouth
No. 16 Paddington and Bristol
Price per packet of four of a kind, 4d.
LIPS FOR TRAIN NAME BOARD CLIPS FOR TRAIN NAME BOARDS These clips are for use with coaches that are not fitted with brackets to take the Name Boards. There are two types: No. 2S, for No. 2 Special Pullman and No. 2 Special Pullman Composite Coaches ; and No. 2, for No. 2 Pullman and No. 2 Saloon Coaches Price per packet of twelve, $1 /-$ (either kind)

OILCAN No. 1
This new oilcan is of improved design. It re places the No. 1 Oilcan previously listed. Price 6d.

The range of Hornby Accessories, already comprehensive has now been increased by the addition of a number of splendid new items. A selection of these is illustrated and described below. If you are a Hornby enthusiast you will appreciate at once the extent to which the new Tunnels, Cuttings, etc., will enhance the realism and effectiveness of your Hornby railway layout.
Tell your dealer that you want to see these new goods
as soon as he has supplies available.
MECCANO LTD., OLD SWAN, LIVERPOOL

TUNNEL No. 5
(LEFT-HAND, CURVED
(as illustrated)
This tunnel is in the form of a small hill, through which the track runs bigu 43 in Price $7 / 6$ track $17 \frac{1}{6}$ in. TUNNEL No.
(RIGHT-HAND, CURVED) Similar to No. 5 Tunnel, but with track in the reverse position. For 2 ft radius tracks only, Base Length of track $17 \frac{1}{4} \mathrm{in}$. Price $7 / 6$

Cutting No. 4
CUTTING No. 4 (STRAIGHT) This is a double cutting, mounted on a base over which the railway Base measurement: Length 15 g in ., width 15 in . Price 6/-

STATION HOARDING This is a realistic accessory, station platform. Price 8 d .

GAUGE 0

POSTEER
 BOARDSto

carry Hornby Miniature Posters. Provided with lugs for attachment to paled fencing, POSTERS IN MINIATURE ductions of MN MIATURE are reproThey are intended to be pasted on the Station Hoatdings or the Poster Boards described above, and are beautifully printed in full colours. Packet of 51 ... Price 6 d .
 are illustrated here. CUTTING No. 1 (END SECTION) (Illustrated)
Base measurement: Length $711 / 16 \mathrm{in}$., width Price, per pair $3 /-$
CUTTING No. 2 (CENTRE SECTION, STRAIGHT) (Illustrated)
The addition of these centre sections enables a Hornby Railway cutting to be extended to any length. They are intended to be used in con junction with the End Sections (Cutting No. 1), between which they are fitted.
Base measurement: Length $10 \frac{1}{2}$ in., width 6 in. Price 2/-
CENTRE
CUTTING No. 3 (CENTRE SECTION, CURVED) This is used for curved tracks in the same manner as the straight centre section, described above, is used for straight tracks. It is suitable for both
1 ft . and 2 ft . radius tracks.

Price 2/-

MODELLED MINIATURES No. 5 TRAIN AND HOTEL STAFF Five figures are included in this set, including Pullman Car Conductor, two Pullman Car Waiters and two Hotel Porters. Price 2/- per set.

Price 4/6

Price, per pair 3/6
HORNBY ACCESSORIES FITTED FOR ELECTRIC LIGHTING.

FENCING WITH FOUR TREES This is the well-known Paled Fencing, provided with four detachable miniature trees fixed in special sockets.

ENGINE SHED No. 1
This Shed will accommodate Locomotives of the M Series, No. 0 and No. 1 types. Price 15/ENGINE SHED No.
(as illustrated)

This Shed will accommodate any of the Hornby Locomotives and Tenders. Price 22/6 The following Hornby Accessories will in future be Engine | Engine Shed No. E1E, Electrical | \ldots | Price | $18 / 6$ | Junction Signal E | \ldots | .. | ... | Price | $10 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Engine Shed No. E2E, Electrical | \ldots | ,. | $26 /-$ | Signal Gantry E | \ldots | \ldots | \ldots | $18 /-$ | | Engine Shed No. E2E, Electrical Station No. 2E

Island Platform \dddot{E}
Goods Platform E
Signal Cabin No. 2E
Signal No. 2E
Double Arm Signal No. 2 F
exible leads, fittan abe connection the above range of accessories, we have introduced a series of ind plugs at one end and sockets that fit the accessories at the other. These leads are available lengths:-9 in., 18 in., and 36 in.-prices $-1 / 4,1 / 5,1 / 6$ respectively
We have also introduced a special Distribution Box to enable two or more accessories to be lighted simultaneously This appliance is fitted with a pair of plugs, for connection to the transformer or accumulator, and also with five pairs
of sockets to accommodate the flexible leads described above. Price of Distribution Box $2 / 6$.

C°ONTINUING my survey of the rolling stock of the Hornby Series, I propose to devote my page this month to the Brake Vans, as these follow naturally upon the Vans considered in last month's "M.M."
In actual practice brake vans serve a very useful purpose, as their name implies ; and their use is compulsory except in certain special circumstances, such as on dock premises, wharves, and yards, where trains travel slowly, and as a rule are not made up to the large number of wagons customary on a main line goods train. With the loose-coupled stock in general use in England for ordinary goods work, the brake van is a very necessary vehicle for the purpose of supplementing the braking power of the engine. The assistance given in this manner is of great value, especially on steeplygraded lines with sharp undulations. In particularly severe districts two or more brake vans may be used on one train to furnish more braking power, and to avoid excessive " bunching " of the wagons in descending inclines, and jerking when steam is put on hard to climb the following rise.

No goods or mineral train on a miniature line could therefore be considered complete without its brake van, and a suitable pattern for each group is included in the Hornby Series. "Two types are available, which we may distinguish as "single-ended " and "double-ended." The reason for this distinction will be apparent from the accompanying photograph. This illustrates a very familiar sight in a large goods or marshalling yard-the road set aside for the storage of brake vans during the breaking-up and making-up operations. Following the principles of standardisation that are observed in the Hornby Series, the construction of the Brake Vans is generally similar to that of the ordinary Vans. They are mounted on the latest pattern base, and are now provided with automatic couplings.

Of the examples shown in the photograph, we will consider the L.M.S.R. vehicle first. This represents a type of goods brake van that is to be seen on many sections of that line, and is in its general plan like those of the former L.N.W.R. Windows are provided at each end of the van so that the guard has a view of his train in either direction. The openings are actually pierced, so that their effect is quite realistic. The corner pillars and planking of the body sides are neatly embossed as in the case of the ordinary Hornby Vans, and an attractive
feature is the provision of doors that open in the proper manner. These are fitted at one end of each side only, under a wide opening in the sides, so that the doors themselves are only about half as high as the sides of the van. The details on the doors are well reproduced and locking handles of the usual pattern enable them to be secured. A partition is fitted that divides the " room " portion of the van from the " entrance." This is in accordance with actual practice, and allows the guard to make himself as snug as possible during long night runs. In the model it gives more finish to the general construction, and provides a useful strut between the sides at what would otherwise be a weak point. The roof is of standard form, and is complete with the small chimney that is part of the equipment on every goods brake. This chimney in actual practice serves the stove provided to relieve the discomforts of the arduous duties of the goods guard. This "single-ended" Brake Van is enamelled grey, and is to be obtained with either L.M.S.R. or G.W.R. lettering, as it may represent equally well the brake vans of both companies.

The other pattern of Brake Van that is illustrated by the L.N.E.R. examples is perhaps a more symmetrical vehicle, being "double-ended" as it were, and so better balanced in appearance. The small end windows of the L.M.S.R. van are replaced by wide openings extending right across the Van from pillar to pillar. This, together with the side openings, provides splendid observation facilities, and doors are conveniently placed at both ends so that the Van consists of a central 'room " portion with an entrance at each end, the centre part as before being partitioned off from the entrance. This Van is typical of many seen on the L.N.E.R. system, and may be considered to follow G.N. section practice more especially. Brake vans of the North Eastern section are similar in style, but differ in having central side look-outs as fitted to many passenger brake vans, while plain openings in the sides replace the doors, so that there is a verandah, as it were, at each end.

The S.R. also use the " double-ended " type of brake van fairly extensively, so that the Hornby example is available with either L.N.E.R. or S.R. lettering, the body colour in each case being brown. The roof, complete with chimney, is finished in white, as is that of the "single-ended" van. Whatever group is favoured, a suitable Hornby Brake Van therefore is available.

H.R.C. COMPETITION PAGE

LOCOMOTIVE FEATURE CONTEST

The four British railway groups possess many different classes of both passenger and goods engines. Most of these classes have some characteristic feature in design by which they may be distinguished from any other class. For instance, no railway enthusiast could mistake an L.N.E.R. " Pacific,", a G.W.R. " King" or an S.R. Nelson" for an engine of any other class. There are numbers of locomotives that are not quite so easy to identify, however, on account of the fact that they are variations of other classes, from which they differ only in minor details. Thus the " Precursor " engines of the L.M.S.R. Western Division that have been superheated are very similar in appearance to the " George the Fifth" locomotives on the same line. Except for a difference in the driving wheel splashers the two classes are so alike as to be easily confused. From the identification point of view these locomotives are by far the most interesting, because of the problems they present. The most popular competitions that have appeared on this page have been those in which H.R.C. members were invited to put their railway knowledge to practical test, and this month we provide an opportunity of this kind in regard to locomotives.

The illustration on this page shows portions of different classes of well-known locomotives, and each of the
pictures includes some prominent feature peculiar to the particular class concerned. Competitors are required to state to which class each of the locomotives belongs, the group owning it, and the characteristic feature in the picture by which the locomotive was identified. This last-mentioned feature need not be given a long description ; it will be sufficient to state in a few words exactly what it is.

To the competitor in each of the two sections, Home and Overseas, who sends in the most accurate solution, a prize of Hornby Train material (or Meccano products if preferred) to the value of 21 /- will be awarded. To the senders of the three entries judged next in order of merit will be awarded similar goods to the value of $15 /-, 10 / 6$ and $5 /-$ respectively. There will also be a number of consolation prizes. In the case of a tie, neatness and novelty of presentation will be the deciding factors.

Envelopes containing entries should be marked H.R.C. " Loco Feature Contest" in the top
 left-hand corner and posted to reach Headquarters at Meccano Ltd., Binns Road, Old Swan, Liverpool, on or before 30th June. The Overseas Section closes on 30th September.
Entries received after the published closing dates will not be entertained and any not bearing the competitor's H.R.C. number will not be accepted.

Summer Photographic Contest

This is the time of the year when interest in railway photography reaches its highest level. Light conditions are favourable, and most members of the H.R.C. take full advantage of the long days of summer, and of the opportunities afforded by holidays; to visit places of railway interest. This plan gives them splendid openings for taking photographs of giant locomotives hauling famous trains, or of other attractive scenes that possess the great merits of railway interest and novelty.

In order to encourage members to make the best use of their cameras on excursions of this kind, this month we are offering prizes in a competition in which even beginners in photography may join. The subject of the contest is "The Most Interesting Railway Photograph." Those who enter this competition are asked to forward prints of railway scenes and they may submit as many entries as they wish. No competitor will be awarded more than one prize, however, and while the photographic merits of the prints submitted will
be taken into account, their interest from a railway point of view also will be carefully considered by the judges and will be the deciding factor in the event of a tie for any prize.

Prizes consisting of Hornby Railway material (or Meccano products if preferred) to the value of $21 /-, 15 /-, 10 / 6$ and $5 /-$ respectively will be awarded to the senders of the four most interesting photographs, and a number of consolation prizes also will be awarded. The competitor's name and full address must be written on the back of each print submitted, together with his H.R.C. membership number, omission of which will result in disqualification, and a description in a few words of the scene of the photograph and of the railway features shown.

Envelopes containing entries should be clearly marked H.R.C. "Summer Photo Contest No. 1 " in the top left-hand corner, and should be posted to reach Headquarters at Meccano Ltd., Binns Road, Old Swan, Liverpool, not later than 30th June. The closing date for the Overseas competitors is 30 th September.

COMPETITION RESULTS

HOME

March " Missing Links Contest."-First: R. Couling (28701), Southall, Middx. Second: R. E. GILES (21323), Newport, Mon. Third: H. W. Kyte (15679) East Molesey, Surrey. Fourth: J. T. Trotter 11447), West Dulwich, London, S.E. 21.

March "Station Layout Contest."-First: D. F. Cleminson (8922), Chiswick, London, W.4. Second: R. A. S. MUSKER (13162), Hightown, Nr. Liverpool Fourth: D. G. TUCKER (16329), Chingford, London, E. 4 Fourth: D. G. Tucker (16329), Chingford, London, E. 4. March "Painting Contest."-First: P. A. Vicary (25935), Cromer, Norfolk. Second: C. A. BrUNT (10229), Leeds. Third: D. W. ENGLAND (29151), (26591), Newlands, Glasgow, S.3.

December "Christmas Loco Contest."-First: F. L. Bingen (28995), Holland. Second: N. Glenday (22983), S. Canterbury, New Zealand. Third: J. H J. W. Boyes (9959), Wellington, New Zealand. 1. W. Boyes (9959), Wellington, New Zealand. Consolation Prizes: F. W. Whyte (17289), Queensland, Australia; R. B. McMillan (9592), Melbourne,
S.C.2, Australia ; M. L. Morgan (22858), N.S.W. S.C.2, Australia; M. L. Morgan (22858), N.S.W. Australia; F. VAN Bulck (1875), Forest-Brussels,
Belgium ; W. Moore (20918), Toronto, Canada; G. E. Belgium ; W. Moore (20918), Toronto, Canada; G. E. Schulz (15425), Coromby, Australia; R. F. Dennison
(14387), Otago, New Zealand: A. Venus (25494), (14387), Otago, New Zealand A. A. VNUS (25494),
Montreal, Canada; W. J. T. WAtson (18065), LeichMontreal, Canada; W. J. T. Watson (18065), LeichN.S.W., Australia; I. T. G. Johnstone (8817), WellingN.S.W.,Australia; 1. . G. Johnstone (8817), Welling S. Africa; H. W. J. Speckham (16032), Natal, S. Africa.

Competition Page JUNE CROSSWORD PUZZLE

CLUES ACROSS

One of three

Share
Sly Look
Claw
Occupation
Waste
Portion
Increasing
Domestic Animals
Growl
Finish
One who lays closely
Messages
Studio
Very simple
Passage
Precious things
Rage
Route
Not true
Greeting
Gold nugget
Severe critics
Sudden rush
Hill
Experiment
Strips of Iron
Newly-wed
Singly
Goes astray

1. Take away
2. Assistants
3. Dressed skin
. Warbled
Address
Regulated
Creek
Opposite of outs
Corrodent
Look
Concluded
Water fowl
Twine
Cuts
Trouble
Ships
Commend
Despatch
Gates (Old Engl.)
Otherwise
Otherwise
Push
Shorten
Aprons
Runner
Runner
Test
Test
Beetles
Beetles
Sheltered
Rests
Faculty

In announcing our March Crossword Puzzle-the result of which is published on this page-we commented that although some seven or eight years had passed since these puzzles had been introduced into Britain, their popularity showed no sign of waning. That view was amply confirmed by the huge entry-in fact we can only conclude that they are more popular than ever.

The competitions in the "M.M." are set for the amusement of our readers principally, and in the crossword puzzles every effort is made to avoid unfair traps in the form of alternative solutions. In the March puzzle there was one trap, but careful examination of the clue revealed which of the two alternatives was intended.

This month's puzzle is, we think, rather harder, but there is no intentional trap and the clues will be found perfectly straightforward. Every word used will be found in Chambers or any other good dictionary. Beyond this it is unnecessary to make any explanation of the requirements of the competition, for the rules
governing the solution of crossword puzzles are well known.
Prizes of Meccano or Hornby Train goods (to be chosen by the winners) to the value of $21 /-, 15 /-, 10 / 6$ and $5 /$ respectively, will be awarded to the senders of the first four correct solutions, in the order in which they are opened on the morning following the closing date. In addition there will be a number of consolation prizes, and, in awarding these, neatness and style of presentation will be taken into consideration. These prizes will be duplicated for Overseas competitors.

Entries should be addressed " June Crossword Puzzle, Meccano Magazine, Binns Road, Old Swan, Liverpool," and must be sent to reach this office not later than 30 th June. Overseas closing date, 30 th September.

Competitors who wish to preserve their "M.M.'s" intact need not cut out the crossword illustration. It will be in order to make a copy of the square and fill that in.

June Photographic Contest

As we announced in our April issue, our monthly photographic contests are open for photographs of any subject. The only restrictions are that each print must bear a title and that the exposure shall have been made by the competitor.

The entries will be divided into two sections, A for those from readers aged 16 and over, B for those under 16 , and in each section there will be prizes of photographic materials, or Meccano products, to the value of $21 /-$ and $10 / 6$ for the best and second best entry respectively

Entries to this month's contest must be addressed "June Photo Contest, Meccano Magazine, Old Swan, Liverpool," and must reach this office not later than 30th June. Overseas, 30th September.

COMPETITION RESULTS

HOME

Happy Snaps (Children's Section), First Prizes: Section A, A. Martin (Birmingham) ; Section B, B. W Aldwell (Belfast). Second Prizes: Section A, S. James (Welwyn Garden City) ; Section B, P. Challis (Bexhill-on-Sea). Consolation rizes: H. R. Deacon (Cheltenham); A. G. Dodsworth (Pendleton); A Flurrie (Mistley) ; M. E. Noyes (Bishop's Stortford) S. Vertue (Sanderstead). (Animals' Section). First Prizes: Section A, H. E. Tomlinson (Blackpool) ; Section B, M. E. Noyes (Bishop's Stortford). Second Section B, M. E. Noves (Bishop's Stortford). Second Prizes: Section A, R. B. Grice (Swanage) ; Section B, F. Simpkins (Paddington, W.2). Consolation Prizes A. K. Corser (Birmingham) ; Miss Pennethorne Haywards Heath).
March Crossword Puzzle. 1. F. W. Jones (Ching ford, E.4) ; 2. D. G. Couper (Edgware) ; 3. D. G. Girling (Stowmarket); 4. P. Bryant (Portsmouth), H. L. Collivgs (London, W. 3) - E Whelation (Dumbarton) (Leicester) : F. Heslop (Doncaster) E. W. GibBins Leicester) ; F. Heslop (Doncaster); R. G. Jenkins (Bristol) ; K. MUrby (Cheltenham); T. W. Steer
(Wallasey) ; F. S. J. Vigot (Jersey); J. A. Wain wright (S. Tottenham, N.15) ; D.H. Wallis (Wimbledon, S.W.19).

OVERSEAS

Crane Drawing Contest.-First Prizes: Section A, R. T. J. Blick (Canterbury) ; Section B, M. Lester (Taranaki, N.Z.). Second Prizes: Section A, S. D. Kurlawala (Bombay); Section B, R. Lister (Red (Martintown, Ont.). Missing Words.-The missing words should replaced in the paragraph in the following order:Remarkable, wind rivals, attained, airman, established, pilot, surpassed, beaten, mistake, made, reached, speed, error, thought believed, considered, amazing.
The prizes were awarded as follows : -1 . R. Craw Ford (Ottawa) ; 2. J. G. Mendonça (Georgetown) ; (Wellington, N.Z.). Consolation Prizes: M. M. Bruce (Tasmania); Cheong Ann Koh (Singapore); Bruce (Tasmania) ; Cheong Ann Koh (Singapore); Christmas Decorations. First Prizes: Section A, F. Thomas (Toronto): Section B, R. J. Evans (Vancouver). Second Prizes: Section A, B. D. H. J. Silva (Colombo) ; Section B, J. M. Rodriguez (Montreal). Christmas Essay. First Prizes: Section A, T. Elliott (Sydney, N.S.W.) ; Section B; J.A. Rodriguez (Montreal). Second Prizes: Section A, R. Garcia (Trinidad) ; Section B, D. Read (Toronto).

Boys! More Wonderful Offers from Your Favourite Store
We stock all Hornby Train and Meccano Parts and give prompt delivery to all parts of Britain.

GAMAGES

We have the fincst stock of Model Aircraft in the country. Machines builttocustomer'sownspecification.

The 'Arrow Plane'
A Harmless Pistol Set
that is a distinct novelty. Arrow is in the form of an aeroplane. for target shooting or flying.

NEW DESIGN IN Vest Pocket CAMERAS

These instruments have a solid metal body with a special quick screw device for bringing lens into position. Collapsible frame finders. High class achromatic lens for crisp pictures, $2 \frac{1}{2} \times 1 \frac{8}{8}$. Will take any standard vest pocket film (8 exposures $1 /-)$)
Size $41^{\prime \prime}$ long $\times 3^{\prime \prime}$ wide $\times 13^{\prime \prime}$ deep overll $\times 3$ wide $\times 1$ deep overall. Canvas Case, $1 / 9$
extra. Worth 1 Gn. Price extra. Worth 1 Gn. Price

A Super Model STEAM BOAT

 at a Phenomenally Low PriceNote the trim, graceful appearance. 19^{*} long. Looks like a real boat and goes very fast too. Mahogany decks. Cream hull with red line, Brass fittings. Extra long running clockwork motor. All British
and compares favourably with foreign boat usually sold elsewhere at $15 /-$.

WHY

do Lemons and Oranges make most refreshing and delicious fruit drinks ?

ALL BOYS

know that Lemons and Oranges are grown in pleasant climates where there is plenty of sunshine, which, combined with the soil, makes these fruits what they are, full of healthgiving qualities, especially vitamins, without which we cannot grow and be strong. All boys (and all girls, too)

LIKE

fresh Lemonade and Orangeade made from Kia-Ora because they know Kia-Ora is made from the finest of fresh fruit and Tate and Lyle's cane sugar. All Boys and Girls know that it is only necessary to add five or six parts of water to one of Kia-Ora to make the drinks they like best; therefore, when Mother is ordering Squash please ask her to say

KIA-ORA

Sold Everywhere
Large Bottles, 2/-. Full Half Bottles, 1/1 KIA-ORA LTD., Blackfriars, London, S.E. 1

MAKING THINGS SAFE

Mother: ", Jimmy, what are you doing there in the pantry ?
Jimmy (hopefully): "Just putting a few things away, Mother."
" I think I shall rather like the new cook we got this morning. There seems to be plenty of go about her."

There is: she's gone!
' Now, Tommy, tell me what are the silent watches of the night ?"
ones whose owners have forgotten to wind them."

Foreman: "None of you men may leave until you've been searched."
Men: "Why?
Foreman: "Because a barrow's missing."
"Have you ever been offered work ?"
"Only once, Ma'am," replied the tramp. " Apart from that, I've met with nothing but kindness."
"Why do you whitewash the chicken coop ?" asked the tiresome young man from the city "So that the hens won't pick the grain out of the wood, of course," snapped Farmer Giles.

Keen Gardener: " Did you write to the nurseryman about the herbaceous border?
Wife: " No, I telephoned instead. I would rather say 'herbaceous' than spell it.'
" That man lost two years of his life through modern " "Good heavens, did somebody make a mistake during an operation?
"No. Finger-prints found on a safe corresponded with his.

Does your brother lie awake at night, Jimmy ? " asked a friend
"Yes," replied Jimmy, " and he lies in his sleep, too, particularly when he dreams that he's fishing.

JUST LIKE FATHER'S!

Barber: " Well, my little man, and how would you like your hair Well,
Small Boy: "If you please, sir, cut it like father's and don't forget the little round hole at the top where the head comes through."

Mistress (to new girl): "You must take great care of the pictures. That small one of a beggar cost the master $£ 2,000$.
New Maid: "Lor', ma'am, my mother got a picture of the whole Royal family for sixpence."

FULL OF GO

What I want is a smart boy, who is alert and intelligent. Are you quick to take notice?
"Yessir-'ad it three times in a fortnight once!"
'That man thinks he knows everything, but there's something he doesn't know.

What is it ?
"How much he doesn't know !"
" If a man smashed a clock, could he be accused of killing time ?

Not if he could prove that the clock struck first." A LOW DOWN GAME

Tramp: "Hey, this dog of yours is biting my ankle!" Farmer: "Of course he is. You surely don't expect such a short-legged dog to bite your neck !

Hostess: "Won't you have some of this cake ?" Guest: "No, thank you. I'm dying to try it, but ' m also trying to diet."

Magistrate : "Do you plead guilty or not guilty ? Prisoner: " Not guilty, sir."
Magistrate: Ever been arrested before
Prisoner: " No, sir, I never stole anything before."

What are you crying for, Billy ?

" Father's invented a new soap, and every time a customer comes in I get washed to show how good it is."

Teacher:
 Jimmy, give me a sentence with the

 word intense.jimmy: "This summer I went to camp with the scouts and we slept intense.

- You're afraid to fight, that's what it is !
' I ain't, but my mother will hammer me if I fight you."
"How will she find out? Tell me that?"
"She'll see the doctor comin' to your house."
Mother: "Sonny, be a good boy and sit down and ell baby a story."
Sonny: "I'm sorry, mother, but I told Dad a story just now and I can't sit down."
"Two pounds of sugar, please."
Here you are, that will be fivepence.
Well I'll bring the sixpence to-morrow, and take a penny change now as mother wants it for the gas meter."
" Did you give your husband the mustard plaster 1 ordered ?
" Yes, doctor, but can he have a bit of bread or something with it next time? He says it was terribly hot eating it alone!'

Man (to Doctor): "What can I do to this boil at the back of my neck
Doctor: "Nothing much, but keep your eye on it."

TARIFF OPERATIONS

Isn't there a lot in the papers now about people having this local anæsthetic
the Yes; I suppose there must be too much duty on the imported stuff !
Manager (glancing at time sheet): " Jones absent again to-day, I see. I suppose he has some sort of lame excus
Clerk: "He has, sir. He's broken his leg."
Teacher (during English lesson): "In this stanza what is meant by the line 'The shades of night were Clever Boy the blinds, sir."

The school inspector was testing the class on American history.
he asked, " should the Americans celebrate George Washington's birthday rather than, say, "Because Washington never told a lie, sir," came the reply.

Prospective Employer (discussing applicant for work over teiephone): "Tell me, is the boy steady ?" Late Employer: "Rather ! If he were any steadier he'd be motionless.

Housewife (to tramp): "You're a big strong man Why don't you get some work to do instead of going round begging like that? You know hard work never round begging
Tramp: "You're wrong there, mum. I've lost two wives that way already."
"What be that stickin' plaster on thy vace ver, Jarge?" "Tis 'cos of a game 'twere played after Harvest Supper last night. Varmer Brown offered a prize for who could pull the ugliest face, and they all come and pulled mine."

The old salt was spinning the usual yarns to the visitor to the little fishing village
Yes, sir," he said, "I was once shipwrecked and lived for a week on a tin of salmon.
"By jove!" he said. "You couldn't have had much room to move about, what!"

CHEAP RESCUES

Kescued man: " You have saved my life, and would gladly give you a shilling, but I regret to say that 1 have only a two-shilling plece.

Rescuer: "Never mind, jump in again, and give me a chance to earn the other shilling."

The two tramps had just left the small town behind them. "What happened when you asked the cook at the doctor's house for some pie ?" demanded one.
"I received a tart reply," said the other.

"COLUMBUS" PACKET AND STAMP OUTFIT FREE
 Actual contents of this wonderful offer:-LARGE COLUMBUS STAMP; POCKET CASE; PERF. GAUGE; DUPLICATE STAMP ALBUM ; 60 DIFFERENT STAMPS; PACKET STAMP MOUNTS; FINE PAIR MONTENEGRO.
 This fine offer also includes stamps from Ceylon, Cuba (Gomez), Australasians, Hivatalos, Egypt (Fuad), Wallis Isles, N.Z. Over 25 unused and many other good varieties. ALL FREE. Just Send 2d. for
 LISBURN \& TOWNSEND (M.M.), LIVERPOOL.

AIR STAMPS

You must be up-to-date in your stamp collecting -you must be an Air Stamp Collector. All the glamour and adventure in aviation can be shown in your album if you put into it the stamps of We can start you on your way with a packet of 25 Air Stamps, all different, for $1 / 2$, post free Write also for our Approval Sheets CQ and DQ which contain only wonderful stamps of this class at bargain prices.

Here's the address
Stanley Gibbons Ltd.
DEPT. S.15, 391 STRAND, LONDON, W.C. 2
 6 MINT BRITISH COLONIALS FREE 6
ZANZIBAR, KENYA, TURKS and CAICOS IS., MOROCCO AGENCIES, SOUDAN and CAYMAN IS. Ask for the No. 200 Packet.

EDWARD SANDELL, $10-11$, FETTER LANE, LONDON, E.C. 4

SETS
 (POSTAGE EXTRA)

5 Angola.
5 Azores
5 Cape Verde
5 Mozambique Pic
10 Barbado

2d.	5 Malta
2 d.	10 M"
3 d.	6 Montenegro
2 d.	10 Dantzig
4d.	5 Esthonia
2d.	10 Turkey
3d.	10 Greece
3d.	10 India ...
4d.	20 French Col.
2d.	20 Czecho
2d.	20 Poland
2d.	20 Roumania
2d.	5 Hong Kong
2d.	5 Trinidad
3d.	

J. RUSSELL

Chetwynd, Shanklin Drive, Westcliff-on-Sea

FREE! 22 French Colonies

Including old and recent issues. Every Stamp a perfect picture in itself-leopards, natives, jungle scenes, etc. You must get them. I will send this collection absolutely free to all Stamp Collectors sending 2 d . postage, abroad 6d. P.O. Only one gift to each applicant.
G. P. KEEF, Mortimer Lodge, Wimbledon Park, London, S.W. 19

20 PORTRAITS, 10 NATIVES, 5 VIEWS,
 Many fine portraits including SHAH of PERSIA, King Christian, BOY KING MICHAEL, Spain Baby head,

 VENEZUELA, BOLIVAR, etc., Pictures of Natives incl. CARIB ARCHER, SOMALI DRUMMER, GABOON WARRIOR, WOMAN OF TAHITI, HAUSA NATIVE, also pictures of Castles, G.P.O.'s and Mosques. Fine views of RABAT, KASBAH and the TOWER OF CONFUCIUS, also Landscapes, Seascapes, Rivers, Lakes and Mountains. Natives fording the stream at KITIM, Merchants crossing the desert, View of a SILESIAN COAL MINE, and picture of Native drawing from the well. In this grand packet over 30 DIFFERENT COUNTRIES are represented. ALL FREE. Just enclose 2d. for postage,requesting our famous approvals.
SHOWELL BROS. (M.M.8), 42, Vanbrugh Hill, London, S.E.3.
 Tili PACKET

Owing to the enormous success of the " Oriental " Packet, I am now offering a slightly different Packet of Orientals of even better value. 30 Stamps in all: EGYPT (large 10 PERSIA FRE Set of PALESTINE, SYRIA unused, Set of ALGERIA, including high values, MESOPOTAMIA, Set of TUNIS new issues, etc., ALAOUITES (Minaret), GREEK surcharged, a beautiful Set
of MOROCCO, AIRPOST, etc. Price 4t. of MOROCCO, AIRPOST, etc. Price $4 \frac{1}{2} \mathrm{~d}$., postage 2d. (abroad 3d. extra). PURCHASERS OF THE ABOVE PACKET asking for Approval Sheets will be presented with a unique Set of 10 PERSIA (usually sold at $1 / 6$). Satisfaction guaranteed or money returned. Senders Addresses of Stamp-Collecting Friends will receive in addition another Set FREE.
H. C. WATKINS, "M" Dept., Granville Road, BARNET

BEWARE OF IMITATIONS! the "diamond" packet is the only packet of UNSORTED STAMPS ON THE MARKET

in which MANY RARE STAMPS have been found. Thousands of packets sold, hundreds of unsolicited testimonials received, The " DIAMOND " PACKET contains approx. 1,000 UNSORTED STAMPS FROM CONVENTS ABROAD. 1 packet, $1 / 3 ; 3$ packets, $3 / 6 ; 5$ packets, $5 / 6$. All post free inland (Abroad, 3 d . per packet extra). When buying Unsorted Stamps, buy "DIAMONDS." Stationers stock them.
O. NERUSH (Dept. F.), 68, TURNPIKE LANE, HORNSEY, LONDON, N. 8

FREE \Longrightarrow FREE

The Best Two Papers Combined The "PHILATELIC MAGAZINE" and "JUNIOR STAMP MAGAZINE"

Only Cost 3d. Fortnightly. Specimen Free if you mention the " M.M."

HARRIS PUBLICATIONS LTD. 112, STRAND, LONDON.

FREE

DO YOU COLLECT Fine Used British Colonials? Then ask to see my collection of 600 different at $\frac{1}{\frac{1}{4}} \mathrm{~d}$. each Stamp, the best value at the lowest cost. Sent on request. A good selection at 1 d . each and upwards in BICKERS, Elveden, Lordswood Avenue, Southampton.

STAMP ALBUM FREE!

 Do You Collect Stamps'? Start o-day-it is The
King of Hobbies and the King of Hobries and the
Hobry of Kings. The Free " Matlock "Stamp Album makes an Excellent Start for Beginners, and also it serves as a Fine Duplicate Book for more advanced Collectors. The "Matlock" Gift Album is beautifully orinted in stiff coloured oictorial cover. It contains :00 pages and countless illustrations, with full index. An Album to be proud of absolutely Free. Ask for approvals and write for this Gigantic Gift Album to-day. Send Colonial Collectors Welcomed.

VICTOR BANCROFT gifts dept., Matlock, england

[^0]
Get out your collection and see how many stamps CHINA AND JAPAN
 WRITE NOW for Special Offer of 15 GRATIS. This offer is FREE to all new applicants for Approvals enclosing $1 \frac{1}{2} \mathrm{~d}$. for postage if application is made to Department No. 186
 ERRINGTON \& MARTIN, SOUTH HACKNEY,

This beautiful mint set of Bi-coloured Persian Stamps, catalogued $12 /-$ by Stanley Gibbons, is absolutely FREE to genuine collectors REQUESTING APPROVALS, a real bargain which cannot be repeated. (Please send $1 \frac{1}{2} \mathrm{~d}$. for postage.)
J. BURTON, 31, ONSLOW ROAD, LIVERPOOL.

SARDINIA PACKET FREE

A fine packet of all different Stamps containing Sardinia, unused; Brunei, unused; Jamaica 1/and 2/-; Mesopotamia; Transvaal 1d., unused Paraguay, 1931, 1c. and 2c., unused; Set of 3 Prussian, officials, unused; Philippine Is. ; Siam, large head; Travancore ; Turkey; New South Wales, etc., free to all asking to see my rest Albums $1 / 4,1 / 10,3 /-4 /-6 /-7 / 6,10 /-$ and S. HAMMOND, 2, Chesham Fields, Bury, Lancs.

Italian Literary Charity Stamp

Italy is one of the very few countries that have been able to maintain an undiminished popularity for a continuous run of commemorative and charity stamp issues. Success in circumstances such as these can be commanded only when a high standard of interest is allied to an equally high standard of production. In this respect Italy is fortunate, for she has an artistic history that presents an almost endless fund of suggestion for the stamp designer.

The newest series is a long one, containing no less than 13 postage and six air post stamps. It has been issued to aid the funds of the Societa Nazionale Dante Aligheiri, which has for its principal aim the spread of Italian culture throughout the world. The higher values are issued at a premium, the whole proceeds of which go to the Society

There is not space here to deal in detail with the subjects of the designs, which are as follows:-10c., Giovanni Boccaccio (1313-1375) ; 15c., Nicolo Machiavelli (1469-1539) ; 20c., Fra Paolo Sanpi (1552$1625)$; 25c., Count Vittorio Alfieri (17491803) ; 30c., U. Foscolo (1776-1827) ; 50c., Count Giacoina Leopardi (1789-1837) ; 75c., Giosne Carducci (1835-1907) ; 1L.25, Carlo Guiseppe Botta (1766-1837) ; 1L.75, Torquato Tasso (1544-1595) ; 2L.75, Francesco Petrarch (1304-1374) ; 5L. + 2L., Ludovici Ariosto (1474-1533), the author of Orlando Furioso, the epic history of the great Este family, considered by many to be among the world's greatest poems. The $10 \mathrm{~L} .+2.50 \mathrm{~L}$. bears a portrait of Dante

himself, one of the three great poets of the early Renaissance, who lived from 1265 until 1321.

The air mail series is devoted exclusively to Leonardo da Vinci, the outstanding figure of Italian artistic history. He lived between 1452 and 1591, and was not only a great painter, but also a great architect and scientist. The earliest flying machine was the product of his brain, and our illustration shows him endeavouring to flv a manually operater machine.

We thank Stanley Gibbons Ltd. for their courtesy in loaning the stamps from which the illustrations for our stamp pages have been made.

A Saint's Signature

The Portuguese Indian stamps commemorating the St. Francis Xavier exhibition at Goa have several points of special interest. They are, for example, the first series turned out by the Indian Nasik Press for any Government other than its own. The designs too include an unusual feature, a facsimile of the Saint's signature reproduced on the 2 reis value. The " Francisco" is perfectly legible, as our illustration shows, but the curious heiroglyphics immediately preceding and succeeding the signature are rather puzzling until it is explained they are a contraction of his mother's surname, Xavier, which he adopted as his own.

The series consists of seven values ranging from 1 reis to $2 \frac{1}{2}$ tangas. In addition to the autograph stamp there are four separate designs, the 1r. showing a monument of St. Francis, the 6r. and $1 \frac{1}{2} t$., a view symbolical of his first landing in India, the $2 t$. a view of the Church of Bom Jesus at Goa, the headquarters of his great missionary work and, finally, on the $2 \frac{1}{2} t$., a view of his mausoleum in the church at Goa.

Air Mail Prices

The trend of prices for air mail rarities is ever upward, and it is impossible for catalogues published at yearly intervals to do more than approximate the real value.

At a recent New York auction many interesting pieces changed hands, and it is interesting to compare the prices realised, with the figures quoted in the Gibbons' Air Stamp catalogue published in February last. The figures given are first the auction and, in parentheses, the catalogue prices:-Columbia 1919, $£ 115$ ($£ 150$ Mint; $£ 50$ used) ; Dominica Cyclone, $\nleftarrow 7 / 3 /-(\notin 13)$; Ecuador 10 s ., $\AA 22 / 10 /-\left(£_{2} 20\right)$; Honduras 10 c . black surcharge, $£ 175$ (unquoted in catalogue) ; Newfoundland, Hawker, Mint, $£ 300$ (unquoted Mint ; Used $£ 200$) ; Newfoundland, Pinedo, Mint, $£ 345$ (unquoted Mint; Used $\not £^{50)}$; Newfoundland, Columbia, Mint, $£ 81$ ($£ 100$). The fact that the Pinedo stamp fetched more than the Hawker is, of course, a reflection of the smaller quantity of Pinedos existing in Mint condition. The quantities are: Pinedo 66, Hawker 87.
At the same auction a Hawker cover fetched $£ 225$, and a Pinedo cover $£ 37$. A sheet of 12 of the Honduras 192520 c . with blue overprint, containing two tête-bèche pairs, was sold for $£ 360$.

Panama Commemorative Air Stamps

The 130th anniversary of Panama's independence was celebrated in November last by a special 5c. air stamp for use on the newly inaugurated inland air mail service between Panama City and various towns in the western parts of the state. The design, which was illustrated in our April issue, shows a monoplane flying over the ruins of Panama Viejo on the southern coast. The inscriptions read " Republica de Panama, Correo Aerea " at the top, and " Noviembre 28 de 1931-Primer Vuelo Nacional" at the bottom.

Some 40,000 copies were printed and placed on sale throughout the Republic. Those remaining unsold at the end of December were returned to the Head Post Office at Panama City.

A Latvian Legend

The National Army Reserve (Latvijas Aizsarsi) is the latest Latvian charity to benefit from a stamp issue. A special short series of five stamps bearing a premium in aid of its funds was issued in February last.

The designs of the stamps tell the story of the delivery of the Letts from slavery to liberty by the god Lacplesis, a great slayer of bears. The legend runs that in ancient days Livonia, as Latvia was then known, was a country of age-old happiness and prosperity, and possessed an extensive foreign trade. Foreign trading visitors cast envious eyes upon happy Livonia, however, and by treachery they brought soldiers to the country in the holds of their ships. After conquering the country by fire and sword, the invaders built themselves strong fortresses and held the Letts in slavery and dire distress. Not until Lacplesis came upon the scene was there any effective opposition, but ultimately the foreigners were driven out of the country. To this day, the legend runs, the spirit of

Lacplesis watches over Latvia

The designs of the stamps are as follows :$1+10$ sant, Kriva the Bard; $2+15 \mathrm{~s}$., the foreign invasion; $3+20 \mathrm{~s}$., Lacplesis the bear-slayer ; $4+30$ s., illustrated here, the liberation of Latvia; $5+40 \mathrm{~s}$, , the Spirit of Lacplesis.

ASTOUNDING OFFER！ stamps 110 free

THE NEAR EAST PACKET containing rare Stamps of the ARAB KINGDOM OF NEJD （high Catalogue value），rare Ukrainian Republic Cat．2／6，Armenia Republic，scarce Colonials， pictorial，beautiful Syrian pictorials，etc．，etc A really high－class packet．Just send 3 d ．in stamps to cover cost of postage and packing and ask to see our FAMOUS NEW ERA APPROVALS．Famous for out of the way

ROSE \＆CO．
29，Mincing Lane，London，E．C． 3

[^1]FREE Tont pratas

PACKET
Anim：－20 Pictorials， 20 Portraits， 15 Animals， 10 Maps， 15 Buildings， 20 Vie
6 d ．per Packet，or the Six for $2 / 6$

11，HILL RISE，RICHMONB，
11，HILL RISE，RICHMOND，SURREY．

65 SPECIAL DIFFERENT FREE
To introduce my excellent approval service to a few more genuine collectors，I am offering the above packet free，which includes Iraq（obsolete），F．M．S．Tigers （3），Str．Sett．（2），S．African Pictorials（3），Gold Coast （obsolete），and many other good stamps，to all who and Pictorials，priced from $\frac{1}{2} \mathrm{~d}$ ，each，less 25% discount． ERIC J．WATTS，48，London Road，NORTHAMPTON．

1000 DIFFERENT STAMPS 1000 ON APPROVAL
from which you may select any 100 for $3 /-$ This selection is not made up of the thousand commonest stamps，but contains specimens priced by Stanley Gibbons up to $1 /-$ each For $3 /-$ you have the opportunity of choosing 100 stamps of the catalogue value of $20 /$－or more H．HARDY，
39，Rosebery Gardens，Hornsey，London，N．8．

These Sacks contain $\frac{1 \mathrm{lb} \text { ．of }}{}$ unsorted Foreign and Colonial paper， 1 lb ．（about 4,500$), 5 /$－ paper，$\frac{1}{2}$ ．（about 4,500 ），5／－ rish only，$\frac{1}{2} \mathrm{lb} .1 / 3$ ，Colonial， $2 / 6$ ．
Postage 2d． Over 200 repeat orders received．
PHIL，20，CASTLEST．，DOVER．

Size $3 \stackrel{\downarrow}{2} \times 2 \frac{1}{2}$ ，de luxe construction throughout．Full double exten－ sion，as rigid as a rock．Rising and cross front． 3 Fited with our world－famous F／3．8 ZODELLAR， $105-\mathrm{mm}$ ．focus．Latest pattern $\mathrm{O}_{\mathrm{F}} \mathrm{UR}$ R Compur shutter with delayed 18／5 action．Direct－vision view－
finder with 3 slides．A first－class
and 8 similar monthly CASH PRICE £7／17／6．
Roll Holder， $15 /-$ F．P．Adapter，8／6． Extra Slides，3／－each．
Send 2d．Stamp for Free Bargain List ！
WALLACE HEATON LTD．，
119 New Bond Stret，Lond Wi
6．47，Berkeley St．，W．1．＇Phones：Mayfair 0924－5－6．

BOOKS FOR BOYS

PHOTOGRAPHY MADE EASY． PRACTICAL KITES AND AEROPLANES

 PRACTICAL KITES AND AEROPLANES（How to make and work them）： MOTOR CYCLING（a reliable guide to the use of petrol engines）． THE YOUNG ENGINEER， 464 pages
（Electricity，Carpentry，Mechanics）．
$\mathbf{5} / \mathbf{6}$ paid Send Stamp for Complete Book List． PUBLICITY（Dept．M），Whitecross Rd．，Weston－s－Mare． Guinea Strength Course，2／6．Height－increasing，1／6． Both，3／6．－J．Baguley，34，Chalgrove Road，Hackney BIRDS EGGS and Collecting Apparatus．Enclose Stamp for Price List．－Forbes，Clutton，Nr．Chester． TALKIES AT HOME．How to obtain your own Cinema Machine．Particulars Free，Post now．－ X．Moviescope，114，Fernlea Road，Balham．
VISITING CARDS，linest Ivory． $50,1 / 9 ; 100,2 / 9$ ， Post Free．－17，Marlpit Lane，Coulsdon，Surrey．
SPEED BOAT HULLS．Built on most approved lines for speed．Hand－made Hulls for making your own Racing Boat．Ready for fitting Motor．Very light and strong．Length 3 4．Beam 6．Satisfaction guaranteed．Price $14 / 6$ post free．－Bottomley Bros
（Dept M．），King Street，${ }^{\text {Delph }}$ Oldham．
（Dept M．），King Street，Delph，Oldham．

MONTSERRAT

A new set of Stamps from this British Possession sent free of charge to bona－fide applicants for selections of duplicates on approval． 16 Old English Revenue Stamps， $1 /-$ to $5 /-$（Vic．， Edw．，Geo．），4d．
HENRY TURNER，
110，Barnett Road，Preston，Brighton，Sussex．

BELGIUM

Special Line for this Month only． 31894 Unused Antwerp Exhibition，5c．，10c．，25c． 21896 Unused Brussels Exhibition，5c．，10c． 8 1902－12 Unused Parcel Post，10c．to 1 fr ． Th＇s lot of 13 Beautiful Stamps Mounted in a six－page Duplicate Book for bid．，post free． A．VINCENT，55，Brighton Grove，Newcastle－on－Tyne． SYDNEY HARBOUR BRIDGE on new Australian Stamps！2d．and 3d．Line－engraved and 2 d ．Surface－printed；the 3 Stamps mint for 10 d ． post free． $5 /-$ value，mint， $5 / 6$ ．Every＂Meccano post free． $5 /-$ value，mint， this great British Engineering feat．Full Lists Free．
NORRIS \＆Co．（Dept．M），NORWOOD，LONDON，S．E． 19 100 DIFFERENT STAMPS FREE．Send for $\frac{1}{2} \mathrm{~d}$ ． Approvals．－Cox，21，Dennis Mansions，Westcliffe． 500 WORLD－WIDE STAMPS， 6 d ．＇ 200 BRITISH COLONIALS 9d．－Way，Wilmslow，Cheshire

OVER $10 /-$ WORTH OF STAMPS

To introduce you to this new firm，we are presenting an amazing packet，the value of which CAN NEVER BE REPEATED．The packet contains unusual and scarce items such as：ESTHONIA（mint），CAPE OF GOOD HOPE，ROUMANIA（charity issue），SET OF AIRMAILS（mint），TURKEY（palace），NEW SOUTH WALES， BRAZIL（airplane），PHILIPPINE ISLANDS（obsolete），HUNGARY（war charity），and the earliest issue of NICARAGUA（cat．7／－），also a FURTHER 30 GOOD QUALITY STAMPS are included，among which are COLONIALS，COMMEMORATIVES，and several UNUSED．This grand packet is ABSOLUTELY FREE to ti 033 who request approvals and enclose 2 d ．for postage．Write NOW，as the supply is limited．

COLLECT THE MILES＂ THAT YOU MAY ＂RECOLLECT WITH SMILES＂ Fit a $⿴ 囗 十 一$ exder

（Insist upon the genuine．）
Prices：Regular 7／9 Trip 18／6 （PEDOMETERS for HIKERS 15／－each）

Sole Importer：F．E．DICKINSON，
St．Andrew＇s House，Holborn Circus，

Puncture Shield and fitted with Puncture Shield．Thousands sold at $8 / 6$ ．Guaranteed 2 years．Trial price $3 / 11$ ．Post 7 d ．Two for $8 / 3$ post paid．Money back terms． Catalngue of Cycles and Acces－
sories FREE． $5 /-$ in $£$ saving．

MOOOR MHOUSES

SOME GENERAL HINTS TO BEGINNERS

Oxen yoked to an Egyptian plough.

MANY cameras make their appearance at Easter and at Whitsuntide, but it is during the month of June that the photographic "epidemic " really begins in earnest. At this time of the year we always receive large numbers of letters from readers who are in need of advice on some photographic matter, and in this article we propose to give a few hints on the points that most frequently arise.

Perhaps the commonest question of all that comes along is in regard to the expense of photography. Many people have the idea that the hobby is necessarily costly, but this is not the case. The people who make the loudest complaints about expense are invariably those who have not taken trouble to acquire the small amount of skill that is needed, and therefore have a large proportion of failures among their snapshots. Photographic films, plates and papers are now so cheap and so simple to use that a reasonably careful photographer should obtain a fairly good result from almost every snapshot.

The commonest cause of failure is that of attempting impossibilities. A box-form camera of tiny size is capable of achieving results equal to those secured with the biggest and most expensive instruments ; the difference lies in the fact that the more expensive equipment can turn out good results under conditions that are impossible for the cheap camera. The expensive camera has a big lens and a many-speeded shutter, while the cheap camera probably has only one snapshot speed and a lens of small aperture.

To make our point clear it will be well to explain that the act of opening the shutter allows a certain quantity of light to pass into the camera-the larger the aperture of the lens the greater the amount of light passed. The quantity of light thus admitted decides the fate of the film. If it is either insufficient or excessive for the particular subject that is being photographed, the exposure is either partially or entirely a failure. In good light conditions the small cheap camera passes as much light as is necessary to give a perfect exposure, but it cannot possibly have the wide range of a camera with an expensive lens.

Obviously, then, if the owner of a cheap camera wishes to secure good results he must consider the limitations of his instrument and not attempt the impossible. Snapshots in the late evening or indoors, or subjects moving at high speeds near the camera, are out of the question.

The tiny size of the film employed in the cheap camera has no bearing on the results. The contact print from a good small picture has all the quality of the post-card photograph, and if desired it can easily be enlarged to this size. If, on the other hand, the tiny picture is a failure, the cost of scrapping it is infinitesimal in comparison with the cost of large-size films. It is indeed an advantage to have a small camera, for the running costs are considerably less. The position may be summed up thus-the small camera gives more snaps to the pound than its bigger brother !

If every photographer would take the small amount of trouble involved in learning the limitations of his camera, the old cry photography is too expensive " would soon be a thing of the past.

Street scene in Zanzibar.

In considering the possibilities of the small camera we have disregarded the question of whether plates or films are to be used, simply because very few amateur photographers use plates nowadays. The handiness of roll films has made them preeminently the material for the photographer who is out simply for enjoyment and to secure pictorial reminders of his fun.

Elsewhere in this issue will be found an interesting article on the joys of camping. The photographer in camp has a wonderful opportunity of securing a splendid collection of photographs. The most ordinary scenes of camp life make excellent pictures, and, apart from the interest they will recall in later days, there is always the opportunity of selling prints to assist in defraying the expenses of the holiday. For this kind of photography a small pocket camera is really the best, as it can always be carried ready for immediate use when a good opportunity arises.

The most successful photographs are those taken when the subject is quite unaware of the fact that he is being immortalised! There is always a touch of life in snapshots taken unawares that is absent from a carefully posed picture, and this is particularly the case with little groups busily engaged on some task such as preparing the mid-day meal. One thing should always be borne in mind, however, and that is no one should ever be photographed in circumstances that would cause him annoyance.

There is one carefully posed photograph that should be taken, and that is a group of members of the camp. Such a photograph provides a splendid memento, and is of interest to everybody concerned. There is no particular difficulty about taking a group of this kind, except that with a very small camera care should be taken to stand far enough back to bring every member of the group well within the boundaries of the picture. The photograph should be taken in as good a light as possible, but preferably not in direct sunshine.

One piece of advice that concerns every owner of a roll film camera may be given here-wind on the film immediately after each exposure has been made. This soon becomes automatic if it is made a regular practice, and it will prevent the aggravating experience of taking two photographs on one film. If the winding-on is delayed for even a few minutes it is surprising how difficult it is to remember with certainty whether it has been done or not!

Every beginner, before he has possessed a camera for long, tries his hand at photographing some of the delightful streams and waterfalls to be found in woods. The results are almost always complete failures, or at least very disappointing. The reason for this is that the beginner attempts snapshots which, as a rule, are out of the question. He fails to realise to what a great extent the trees cut off the light. In such circumstances the eye is a poor guide to the strength of the light, on account of the ready way in which it adapts itself to differing conditions. In practically all woodland scenes a time exposure is necessary, and this can usually be given by resting the camera firmly on a rock or other convenient support.

Next month we shall deal with this exposure problem, and with the use of the camera generally.

Another Egyptian ploughing scene.

BLUE BIRD'S engine "behaved

 perfectly, and we did not have to change even a sparking plug..""This," continues Sir Malcolm, " is a high tribute to Prats Ethyl . . . Even more remarkable still was the EXTRAORDINARILY LOW PETROL CONSUMPTION, which we found afterwards worked out at close on $5 \frac{1}{2}$ miles to the gallon, which is incredible when it is realised that the power developed by the engine was over 1,450 h.p. and that the car was travelling at an average speed of over 253 m.p.h.
"I have never used any other fuel but Pratts Ethyl on my attempts on the world's land speed record with 'Blue Bird,' and it has always given me every satisfaction."

Sir Malcolm Campbell used PRATS ETHYL SPECIAL

PRATTS ETHYL is now SAME PRICE as REGULAR PETROLS

Drive you models! with a real motor!

Listen. you fellows.

here are two tyres that have been specially designed and built for you. One is a Roadster tyre with a tread of tough but lively black rubber. The other is a real Sports tyre with a very fast hard-wearing red tread. They are made by DUNLOP, and you know what that means. It means they are the best tyres you can buy.

duntop TYRES
 SADDLES, TOOLBAGS INFLATERS, REPAIR OUTFITS

DUNLOP RUBBER CO. LIMITED, Fort Dunlop, Birmingham. Branches throughout the World.

DUNLOP JUVENILE

SIZE

(wired type)	
$24^{\prime \prime} \times 1{ }^{\prime \prime}$	
$24^{\prime \prime} \times 1{ }^{\frac{1}{2}}{ }^{\prime \prime}$	
$26^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$	
COVER	TUBE
5/6	2/6

DUNLOP SPORTS JUVENILE
(wired type) $24^{\prime \prime} \times 13^{\prime \prime}$
$24^{\prime \prime} \mathrm{x} \mathrm{l}^{\frac{1_{2}^{*}}{}}$
$26^{\prime \prime} \times 1 \frac{\frac{1}{2}^{\prime \prime}}{}$
COVER TUBE
4/6
2/-
When you buy a new cycle be sure it is fitted with a DUNLOP WATERPROOF SADDLE

Dunlop saddles are absolutely waterproof. Your Dad will tell you how important that is. They are comfortable, they never sag nor lose their shape, and they require no "breaking-in."

CAMPING HOLIDAYS! Tents, slepening Bars, Billy Cans Ground Sheets, Camp Stools, Ruc-Sacs

The "LIGHTWEIGHT" 6 ft . long, 4 ft .3 in . wide, 3 ft .6 in . Jas. GROSE Ltd. high, 6 in. walls, overhanging eaves, genuine weatherproof white tent
cloth, jointed poles, pegs, etc., packed GREEN ROTPROOF CANVAS $18 /-$ Car. paid.

The "EASIPITCH"
7 ft . long, 5 ft . wide, 4 ft .6 in . high. Jas. GROSE Ltd. 1 ft . walls, overhanging eaves, ventilators, jointed poles, pegs, etc.,
proofed white tent cloth, weight 10 lb , 'GREEN ROTPROOF CANVAS $25 /$ Carriage paid.

J.G.L. SLEEPING BAGS

Absolutely Damp Proof, Rubber Protected Ground, Green Rotproo op, Lined good Warm Fleece

SUPERIOR HEAVY FLEECE LINED 15/-

CAMPING MESS TINS

Army patt illustrated \ldots as 1/3 of 4 separate p," consisting of 4 separate pieces 1/11 The "JAARKEY" pact flat type, easily $2 / 3$ carried in ruc-sac $2 / 3$ $\begin{array}{lccc}\text { WATERPROOF } & 6^{\prime} \times 3^{\prime} & 7^{\prime} \times 5^{\prime} & 9^{\prime} \times 6^{\prime} \\ \text { GROUND SHEETS } & \mathbf{3} / 6 & 6 / 9 & \mathbf{8} / 11\end{array}$
 LIST, 3d. POST FREE.

The "LIGHTPARTY" 6 ft .6 in . long, 6 ft . wide, 6 ft . high 2 ft . walls, overhanging eaves, ventilators, Ridge Jas. GROSE Ltd. Pole, pegs, runners, etc., white $2 / 8$ neat carrier net weight, 18 l lb . GREEN ROTPROOF CANVAS 42/Carriage Paid.

The "LIGHTBELL"
Extra strong white duck bell tent, circumference 30 ft ., 8 ft . high, 2 ft . 3 in . walls, Jas, GROSE Ltd. when packed in container 18 in. by 10 in . by 10 in . weight 15 Ibs ., complete with pegs mallet, runners, etc. XTRA STRONG GREEN WILLESUEN 70 /IDEAL FOR CUB OR SCOUT TROOPS. Camp Stools Steel. British. Polished Wood Seat. each 2/6

When you ask for SECCOTINE
 (REGD.)

 See that you get it!Boys! When you ask for Seccotine, look for the name on the tube and carton. Seccotine was famous when your Dad was a boy. To-day all the world uses it.
People who know choose Seccotine-because it has been proved to be more than TWICE AS STRONG AS ANY OTHER ADHESIVE.

Your models will be stronger-have permanent joints-if you stick them with Seccotine.
MADE BY BRITISH WORKPEOPLE

POST COUPON FOR FREE BOOKLET
To: Dept. M.,
McCaw, Stevenson \& Orr Ltd., Belfast.
I should like to have, post free, a copy of obtainable in tubes, $4 \frac{1}{2} \mathrm{~d} ., 6 \mathrm{~d}$. and 9 d . at all good Stationers, Ironmongers and General Stores THERE IS ONLY ONE SECCOTINE
your Free Booklet.

Name.
Address

The AEROBOAT is a winner all along the line. With its long, rakish lines and glistening mahogany deck it's the favourite on every pond for every race. By adding more rubber to the drive the Aeroboat can be "tuned up" to give either a swift record-breaking dash or a long, fast cruise which outlasts all clockwork rivals. It takes only is seconds to charge the Aeroboat motor for a splendid run of many minutes. You can see them, and all other Bowman Models, at Halfords or Hobbies branches, and good shops everywhere.

AEROBOAT I, Length $32 \frac{1}{2} \mathrm{in}$. 17/6
AEROBOAT II Length 31 in
$15 / 6$
THE " WHIPPET," Length 29 in .
9/6
THE " GREYHOUND," Length 30 in .
8/6
(Postage 1/-)
4/9
THE "FIREFL'Y" Length 20 in
3/9
THE SWALLOW is one of the most popular boats of the Bowman fleet. Its "double power" engine gives it an amazing turn of speed, and it will run for 20 minutes on one filling. Fitted with brass boiler, safety valve and overflow tap. Patent wood hull, length 20 in., beam $3 \frac{1}{2} \mathrm{in}$.

FREE. Write to-day for the Bowman Booklet containing full details of all the famous Bowman Boats to Bowman Models (Dept. M.M. I3), Dereham, Norfolk.

A real Speed Model

The TERRY
 No. 1088 N.R.

Built like the ordinary and C.T.C. models but without rear springs and under carriage. The ideal lightweight saddle for all machines. Your agent will fit it for you.
Weight only 1 lb .14 ozs . Ladies' model 1 lb .12 ozs.

Price

14/- each
C.T.C. and ordinary models - - 15/6 each If unobtainable locally, please write to us.

List of Specialities post free.
HERBERT TERRY \& SONS LTD., REDDITCH, ENCLAND. Est. 1855.

London:
Birmingham :
Manchester:
27. Holborn Viaduct. 210, Corporation St. 279, Deansgate.

The Finest Display of British-Made Scale Models in the World

When in London or Manchester call at Bassett-Lowke Ltd, and see the wonderful show of Models of every description. If you are passing through Northampton call and see them being made-in any case send for our Northampton call and see them "Eving made-in any fully illustrated. Ask for Catalogue No. 17 and send one shilling and sixpence.
SECTIONAL CATALOGUES : A/17. Model Railways and their Equipment. Price 6d. ; B/17. Stationary Engines and Boilers, Fittings, Castings and Hints for Model Making. Price 6d. ; S/17. Sailing Yachts, Power Boats and every description of 'Ships' Fittings. Price 6d.
Bassett-Lowke Ltd., Northampton

YOUR Experiment

When you've been using lott s Chemistry Set you have probably discovered some own. Let us know about it! It may easily win one of the handsome Prizes we are offering for some Prizes we are offering for it out, add your name, address and age, and post it to the address below. To every entry must be

maywina

 attached the illustration of the Cathedral, built with Lott's Bricks, shown on the last page of the Chemistry Book in your set.Here are the Prizes:-1st Prize-A No. 3 Lott's Chemistry Set or spares to value of $10 / 6$. 2nd Prize-A No. 2 set or spares to value of $6 /-$. 3 rd PrizeA No. 1 Set or spares to value of $3 / 6$. Also 3 Consolation Prizes of $2 / 6$. NOW GO IN AND WIN
"Competition," Dept. M.M., Lott's Bricks Ltd., Watford, Herts, BOX 1 with 18 chemicals, accessories, and book of 42 experiments. Price $3 / 6$

BOX 2 with 22 Chemicals. Bunsen Burner, accessories and book of 80 experiments.

BOX 3 with 30 Chemicals, Bunsen Burner, extra accessories and book of 131 experiments. Price $10 / 6$

Spares supplied. Obtainable from
leading toy dealers and stores.

,omish LOTTS
 PERFECTLY
 SAFE TO
 HANDLE.
 CHEMISIRY

For your Model Railway

It's great fun loading up your trains with bricks and sending them off by rail to the sites chosen for the buildings. What realistic models, too, rail to the sites chosen for the buildings. What realistic models, too, you can build with Lott's Bricks:-Houses, Bridges, Towers, Railway The Tudor Series contains many designs of Old English half-timbered buildings. Lemo sets are complere with bricks embossed with designs of Doors, Windows and Bonded brickwork. All the sets contain illustrations of the models printed in colours.

COTTAGE. Box 1, Lodomo

CRICKET PAVILION. Box 3, Tudor Blocks

LOTT'S BRICKS

A few particulars of some of the sets :-
BOX 1. Contains bricks roofs, trees and fences, and plans for 30 models.

Price 5/-
BOX 2. Complete with bricks, roofs, trees and fences, and plans for 48 models. Price $10 /-$ BOX 3. Containing bricks, roofs, and plans for 72 models. Contains twice as many bricks as Box 2 and builds proportionately larger models. Price $17 / 6$ TUDOR BLOCKS at $3 / 6$ 7/6, 21/- per box.
LODOMO at $3 / 6,7 / 6$, 12/6 per box.
RAILWAY BOX. With this set especially fine models of Stations and Signal Boxes can be built. Contains large numbers of embossed Door and Window bricks; also roofs and platform sections. \qquad Price 17/6
Write for complete list illustrated in colours. Dept. M.M.
OTT'S BRICKS LTD. WATFORD, HERTS.

If you have not yet taken up CAMPING

The Cyclist Camper or Hiking Camper will find the 1932 Edition of "CAMPEDIA" a veritable gold mine of information concerning camping and camp kit, replete with facts and information which comes from ripe experience, together with special literary articles by recognised authorities on camping, rambling, etc.

Bukta
LEADS the
way to happy week-end and holiday camping

Plan your equipment scientifically with the aid of this little book and thus get the best for your own particular purpose at the minimum of cost. Get a copy of "CAMPEDIA" from your Outfitter, or write to Dept. P.15, E. R. Buck \& Sons Ltd., Campedia House, Whitworth St., Manchester. (Wholesale only.)

A selection of TENTS for Cyclists or Hikers from the Bukta range. There are many other types, for every purpose, from $13 / 11$

RUCSACS:

"Wanderlust" patented pattern from ... $\mathbf{3 / 9}$

YOU CAN NOW OWN A 30 INCH BOAT
 DOWN

These wonderful Bowman racing boats are well known for their speed and the fact that they can be "tuned" for long runs or high speed by adding more or less rubber to the motor. Either model can now be supplied direct from us on receipt of $2 / 6$ for Greyhound or $3 / 6$ for Whippet, provided that you mention your retailer's name and agree to send $1 /-$ per month for six months on the 1st of each month. Offer open for short time only.

THE "GREYHOUND." A sporting junior racing boat with special streamline wood hull and spray hood. Beautifully enamelled throughout in three colours.

Beam 3". Runs for two to four minutes. Simple type rubber motor with control lever anó pro-patent
"Easiwind." Length 30 ".
Cash price $8^{\prime} 6$

THE "WHIPPET." A racy gear-driven model with streamline wood hull and spray hood. Beautifully enamelled throughout in three colours. Length 29 ".

Beam $23^{\prime \prime}$. Runs for five minutes. Bowman special rubber motor "with gearing, control lever and pro- 9/6
patent "Easiwind." Cash Price O/6

This wonderful offer is only open for a short time, so write now to

MECCANO LUBRICATING OIL
 Before commencing to operate a Meccano model, or to run a Hornby Train, all gears and bearings should be oiled thoroughly with Meccano Lubricating On. This of speciary prepared and is the purpose. consistency for the purpose. Meccano Ltd., Binns Road, Old Swan, Liverpool.

WRITING PADS
FOR MECCANO BOYS

These Writing Pads are very popular with Meccano boys as is shown by the large number of letters we receive each day written on the familiar tinted paper
The Pads are supplied in two sizes, each consisting of 50 sheets and cover.
Prices-Large Size $1 /-$ each (post free). Small Size 6d. each (post free)
Special envelopes, appropriately printed and matching the writing paper in colour, are also available. These are suitable for both the large and the small sheets of writing paper Meccano Ltd., Binns Road, Old Swan, Liverpool.

OIL CAN No. 2 ("K" Type)

Every Meccano and Hornby Train enthusiast should add a miniature " K " type oil can to his equipment for the purpose of oiling Meccano models, Hornby Trains, etc. The oil is ejected drop by drop by depressing the valve, as in the full-sized model, and in all other respects the oiler is perfect.
One of the oil cans was sent to H.R.H. the Prince of Wales, and a gracious letter of acknowledgment was received expressing H.R.H.'s admiration of the beautiful lines and perfect finish of this model. OId Swan, Liverpool.

How to obtain the "M.M."
The "M.M." may be ordered fromall Meccano dealers, or from any newsagent or bookstall price 6d. per copy. If desired it will be sent direct, post free, for $4 /-$ for six, or $8 /-$ for twelve issues. As a rule back numbers cannot be supplied, because only sufficient copies are printed to fill standing orders. To preven disappointment, therefore, place a regular order with your dealer, newsagent, or th
" " Meccano Magazine," Binns Road, Old Swan, Liverpool.

HORNBY TANK LOCOMOTIVES

Hornby No. 1 Tank Locomotive This is a strong and durable Locomotive, capable of any amount of hard work. It is richly enamelled, highly finished, and is fitted with brake mechanism and reversing gear Supplied in colours to represent Locomotives, Gauge 0. Price 12/6

Hornby No. 2
Special Tank Locomotive This Locomotive is fitted with a very powerful Clockwork mechanism, giving great length of run and exceptional pulling power. It is a perfect model in every respect and is beautifully finished in the colours of the L.M.S.R., L.N.E.R., Meccano Ltd., Binns Road, Old Swan, Liverpool.

MECCANO ENAMEL

Meccano enamel

el has

 been introduced to enable model-builders to convert nickel parts to colour or to touch up coloured parts should such treatment become necessary through mishandling. It is available in red, grey or green, each colour being identical in shade with the enamels used in the Mesen Factory for spraying Meccano parts. Price per tin 8d.Meccano Ltd., Binns Road, Old Swan, Liverpool.

H.R.C.

WRITING PADS

Every member of the Hornby Railway Company should make a point of using the pecial H.R.C. writing paper for correspondence with his friends and with Headquarters. It is available in two sizes and is supplied in pads, each consisting of 50 sheets of superfine
buff paper, and cover.
Prices, Large Size $1 /$ each (post free). Small Size 6d. each (post free).

ENVELOPES

Special envelopes, attractively printed and matching the writing paper in colour, are also avarable. These are surtable sheets both the large and the small writing paper.

Price, per packet of $50,8 \mathrm{~d}$. post free.

Large
free)

FAMOUS TRAINS

Thirteen chapters of Mr. C. J. Allen at his best ! All Railway enthusiasts should have this book. It shoula have the reliable and valuable Railway informa tion, including the leadin dimensions of many of the most famous express passenger locomotives in this country.
Price now $1 / 9$ post free from
MECCANO LIMITED, Old Swan, Liverpool.

Pocket Book

The
Meccano Engineer's

Essential to the equipment of every Meccano Boy

The Meccano Engineer's Pocket Book, which has been specially designed for the use of Meccano boys, is strongly bound in imitation red leather, the paper being squared exactly as that used by real engineers. It enables you to make drawings of any en gineering structures-Cranes, Bridges, Steam Shovels or Locomotives-that you may see on vour travels.

If you are a Meccano boy you should adopt the habit of taking engineering notes and sketches of interest, as this will help you to get a great deal more fun out of your hobby. For instance, supposing you are on a tour of inspection of some interesting docks and a cleverly designed crane catches your eye. "Just the very thing for me to build with my Meccano" you say to yourself, and you immediately proceed to make a sketch of the important features with a view to constructing a Meccano model of the crane when you get home. The Meccano Engineer's Pocket Book costs $1 /-$ post free (Overseas price $1 / 6$ post free), and will be sent on receipt of this amount in stamps. Write to Departmen No. 73, Meccano Ltd., Old Swan, Liverpool

Meccano Limited Old Swan

Liverpool

Mecanos Hornby Tain Supplies
 All the dealers whose advertisements appear on this and the opposite page carry full stocks of Meccano Outfits, Accessory Outfits, and Meccano parts
 Hornby Trains and Hornby Train Accessories all the year round. The names are arranged in alphabetical order of town.

$\begin{aligned} & \text { JOHN N. PIPER, } \\ & \text { Tel. } 2797 \text { 118, Union Street, } \\ & \text { ABERDEEN. } . \end{aligned}$
HARRY BROWN, 1, Cross Street, Tel. 2221 ALTRINCHAM
J. BELL, 10, Lower Garfield St., Royal Avenue, BELFAST.
PATTERSONS, of Bridge Street, BELFAST.
J. ROBB \& CO. LTD., Castle Place, BELFAST.

L. W. WALKER,
262, Green Lane,
Small Heath, BIRMINGHAM.

MERCER'S DOLLS' HOSPITAL,
68, Darwen Street, BLACKBURN.

SELLENS BAZAAR,

 54, Waterloo Road, BLACKPOOL, S.S.
BROWN MUFF \& CO. LTD., Tel. 2890 BRADFORD.

RUSHWORTHS LIMITED, Kirkgate,

BRADFORD.

JOHN TAYLOR, 28, Preston Street,
 Tel. : Brighton 1357 BRIGHTON.

S. H. ARTHUR,
$11 \& 12$, Lower Arcade, BRISTOL. 15 \& 16, Narrow Wine Street, BRISTOL. Tel. 511

[^2]
S. DAVIS,
 50, Broad Street, CHESHAM. 3, Station Parade, Croxley Green.
 DONALDSON'S CAMERA HOUSE, Metropole Buildings,
 CORK.

E. A. ANELAY, Parkgate,
Tel. 2925
DARLINGTON.

> | W. T. MARTIN, | Tel. 4578 |
| :---: | ---: |
| 199, Princes St., 68, Wellgate, | |
| 87, High Street, Lochee, DUNDEE. | |

SMITH BROTHERS,

3-15, Murraygate,
Tel. 5041
DUNDEE.
Devon \& Somerset Stores Ltd., Tel. 2638 Toy \& Sports Dealers, Telegrams : Stores, Exeter EXETER.

Established 1789.
CLYDE MODEL DOCKYARD, 22-23, Argyll Arcade, GLASGOW. Model Makers to the Admiralty, Railway Coys., etc.

Lewis's Royal Polytechnic Ltd., Argyle Street,

GLASGOW.

> LUMLEY'S,
> Lumley House, Sauchiehall Street, Tel. :Douglas 2701 GLASGOW.
R. WYLIE HILL \& CO. LTD., 20, Buchanan St. \& Argyll Arcade, GLASGOW, C.1.

```
G. WATSON, Guildford Doll's Hospital, Swan Lane, GUILDFORD.
```

H. POULTON, Toyland, 75 \& 77, High Street, HOUNSLOW, Middlesex.

YE OLDE TOY SHOPPE, Chariot Street,
Tel. : Central 35031 and 533y1 HULL.

TOWNLEY \& TAYLOR, Tel. 570
 KENDAL.

[^3]
BENTALLS LTD., KINGSTON-ON-THAMES.
 Tel. 1001 Kingston

```
GIBB & WATSON,
    270-274, High Street,
Tel. }252
KIRKCALDY.
```

ROBOTHAM'S LIMITED, 32/4/6/8, Belvoir Street, Tel. 60809

LEICESTER.

J. T. WEIGHTMAN,

198, Charnwood Street,
LEICESTER.
Leith Provident Co-operative Socy. Ltd.,
Drapery Dept., 174, Great Junction St.,
LEITH.

FREDERICK BECK,

$22 / 6$, Camden Passage, ISLINGTON, N.1.

A. \& B. BLACKMAN \& SONS, 11a-17, Fortess Road, Kentish Town, Tel. : Mount View 4310 LONDON, N.W.5.
Bon Marché Ltd., Brixton, Tel. : Brixton $6201 \quad$ LONDON, S.W.9. \mathbf{l}

H. HOLDRON LTD.,

Tel. : Rye Lane,
New Cross 4041 PECKHAM, S.E.15.

W. HUMPHRYS \& SON,
$269 / 271 / 273$ \& 275, Rye Lane,
Estab. in $1840 \quad$ PECKHAM, S.E. 15.

LEDWITH BROS.,

42 \& 44, Walworth Road,
Nr. ELEPHANT
aND CASTLE LONDON, S.E.17.
The Arundel Cycle \& Sports Store, 52, Church Road,
'Phone :
ngstone 2482
H. G. PARTRIDGE \& CO., 10, Chapel Street,
Tel. 234
LUTON.
A. INMAN, MANCHESTER.

105, Lapwing Lane, Didsbury. Tel. 1518.
179, Dickenson Rd., Rusholme. Tel. 2241.

H. WILES LTD.,

124, Market Street, MANCHESTER.

THE MANSFIELD \& SUTTON CO-OP. SOC. LTD., Queen Street, Tel. 583 MANSFIELD.
F. W. WARNER (for Boys' Toys), Barras Bridge (Next Grand Hotel), NEWCASTLE-ON-TYNE.

W. MARK \& CO. LTD.,
27, The Drapery,
Tel. $461 \quad$ NORTHAMPTON.

BEECROFT \& SONS,

 16, Pelham Street,Tel. 41434
NOTTINGHAM.
CARTWRIGHT \& GAUNT, 231, Mansfield Road, NOTTINGHAM.

```
J. R. NORRIS LTD., 5, Friar Lane,
Tel. 43488 NOTTINGHAM.
```

PEARSON \& PEARSON,
12, Angel Row,
NOTTINGHAM.

```
REDMAYNE & TODD LTD.,
    Carrington Street,
Tel. }4160
                NOTTINGHAM.
```

THE ATHLETIC STORES, Opposite Town Hall,
Tel. 1238
OLDHAM.
E. DE LA MARE,
$9 / 13$, George Street,
Tel. 3456
OXFORD.

W. TYSON,

Tel.:

23, Rose Mount,
B'head 1495
OXTON, Birkenhead.

LAWSONS LTD.,
13, Frankfort Street,
Tel 398
PLYMOUTH.

ERIC G. ENGLAND, Tel. 68

PONTEFRACT.

JAMES GRAHAM,

9, Montague Street, ROTHESAY.

COLE BROTHERS LTD.,

Tel. 21071
SHEFFIELD.

SHEFFIELD PHOTO CO. LTD.,
6, Norfolk Row (Fargate),
Tel. 23891
SHEFFIELD.

CURRYS LTD., 2, Prospect Place, Above Bar, SOUTHAMPTON.

OSBORN \& CO. (So'ton) Ltd., 9, High Street,

SOUTHAMPTON.
TYRRELL \& GREEN LTD., Above Bar, SOUTHAMPTON.

RAVEN'S STORE,
90-92, High Street,
Tel. $67665 \quad$ SOUTHEND-ON-SEA.

DAN MORGAN, The Meccano Centre, 218, Oxford St.,
Tel. 2346
SWANSEA.
L. MYERSCOUGH, 57, South Rd.,

WATERLOO.
Branches : Crosby \& Litherland.

PICKERINGS,

28, High Ousegate,
Tel. 3678
YORK.

Storage Boxes for Meccano Parts

Almost every Meccano boy purchases additional Meccano parts from time to time, but there is sometimes difficulty in finding suitable accommodation for them. We supply strongly made boxes that have been specially designed for the purpose, enabling such extra parts to be stored neatly and methodically so that they are always easily accessible. There are three

No. 1 STORAGE BOX
Attractively enamelled in red, and fitted with partitions as shown in the illustration. The lid is hinged and is secured by means of lock and key. Price $10^{\prime} 6$

Dimensions:
Length $15 \frac{2}{2}$ ins.
Width $8 \frac{2}{4}$ ins.
Depth $2 \sqrt[3]{\mathrm{ins} \text {. }}$
No. 2 STORAGE BOX
Finished as No. 1 Box and provided with lock and key. The tray with which it is fitted

No. 3
Dimensions :
Length 20 ins. Depth $5 \frac{1}{2}$ ins. described below.

Whan properly fitted up and adjusted B.M. Model Aircraft

 should give the following results.$\begin{array}{lll}\text { B.M.1. } & 17 \mathrm{in} . & 16 \mathrm{in} . \\ \text { B.M.2. } & 17 \mathrm{in.} & 16 \mathrm{in} . \\ \text { B.M.3. } & 20 \mathrm{in} . & 19 \mathrm{in} .\end{array}$
B.M.4. 25 in .26 in .
$\begin{array}{lllll} & 25 \mathrm{in} . & 26 \mathrm{in} . & 800 \mathrm{ft} . & 40-50 \mathrm{ft} . \\ \text { B.M.4. } & 20-80 \mathrm{ft} . \\ \text { B.M.5. } & 29 \mathrm{in} . & 28 \mathrm{in} . & 1000 \mathrm{ft} & 80-100 \mathrm{l}\end{array}$
 BE BRITISH B.M. 15 2/6 B.M. 35 3/6
If unable to obtain supplies from your local stor
BRITISH Mrite direct to:

THE

RAILWAY MAGAZINE

Principal Contents JUNE NUMBER
The "Golden Mountain" Pullman Express.
Southern" Model Railway.
G. \& S.W.R. Locomotives and Train Working, 1895-1910.
Stroudley Reminiscences.
The Liverpool Overhead Railway. British Locomotive Practice and Performance.
The above, all fully illustrated, are in addition to the regular features such as " British Locomotive Practice and Performance " and "The Why and the Wherefore.

The Railway Magazine

MONTHLY Illustrated ONE SHILLING 33, TOTHILL ST., WESTMINSTER LONDON, S.W. 1

PATENTS, \&
 TRADE DESIGNS MARKS

H. D. FITZPATRICK \& CO., Chartered Patent Agents,
49, Chancery Lane, London, W.C.2. Telephone : Holborn 0459.

BUTTERFLIES, BIRDS' EGGS, PLANTS, etc.
Obtain your supplies of Books, Collecting Apparatus and Specimens from
WATKINS \& DONCASTER, Dept. M,
36, Strand, London, W.C. 2 (P.O. Box 126).
'Phone: Temple Bar 9451. Full Catalogue Post Free

To encourage our mail order dept. we guarantee to send every sixth order opened on either of these boats, free, and money will be returned in full

YOU MAY GET THIS BOAT
 FREE!

BOWMAN "SWALLOW" STEAM LAUNCH

WRITE NOW

Steams for nearlyone mile on each filling. Fitted with $17 / 601$
"Double Power" steam engine. Length, 1 ft .8 ins.

- 2

DON'T DELAY
BOWMAN GREYHOUND RACING BOAT.
Length, 30 inches. Wound in 10 secs. Simple rubber motor which $8 / 6$ can be adjusted for very high speed on long runs.
FROST \& CO. (DEPT. M.M. 12), 62, HIGH STREET, WIMBLEDON, S.W.

All models fitted with our patent combined Rudder Fin rubber hook and skid (Pat. 10353/32) which acts as an automatic stabiliser, helping to make the model fly a straight course.

POTTER \& SON
Market Place, LOUGHBOROUGH
'Phone: LISTS FREE. ${ }^{2}$ Telegrams :
610 THIS Pow MAGNIFIES 50 times!

Boys! Carry out your own research with this amazing microscope ! Magnifies everything 50 times (lineal power), 2,500 (superficial), Strongly made in metal with adjustable mirror and eye-piece. In box complete with object slide, plain slide and one slide with concavity for liquids. Full instructions. iverpool Terr., Worthing

LONDON
E.C. 2 'Phone:
NATIONAL 3714

\triangle RE you content with the position you occupy now-with the money you are earning-or do you wish for something better and somehing more ?
Ask yourself these questions; then carefully consider what you ought to do. Don't for a moment imagine that integrity, punctuality, and length of service will of themselves carry you far. The one thing more than any other that enables a man to rise above his fellows and win a way into the betterpaid jobs is a sound and practical technical training. He cannot possibly get such a training in the course of his everyday work.
One hour a day spent the I.C.S. spare-time way will give you the best training of its kind in the world. During the last 41 years $4,000,000$ students have been benefited by I.C.S. training. Tens of thousands have won remarkable success. Why not you also ?
Let us tell you how you can improve yourself in your calling. Our 400 Courses include the following :

Accountancy \& Book-keeping Plumbing
Advertising
Architecture \& Building Commercial Art Commercial Training Draughtsmanship Engineering (all branches) French and Spanish General Education Insurance Professional and Technical Exams. Scientific Management Shorthand-Typewriting Textiles
Window Dressing Wirdow Dressing
Wireless Engineering Woodworking
Write to-day for Booklet containing full information regarding the Courses in which you are most interested. It will be sent gratis and post free.
International Correspondence Schools Ltd., 218, International Bldgs., Kingsway, London, w.C.2.

How to Model
A Lion, Bear, Camel, Elephant, Horse and Cat, Cow and Goat AN ENTIRELY NEW SERIES 6d. each or post free 9d.

HARBUTT'S PLASTICINE LTD.
99, BATHAMPTON, BATH

DO NOT

MISS THIS

PRICE $\stackrel{1 /-}{ }$

CATAPULT GLIDER

NOW BOYS! Here's a chance to get one of our famous Gliders. Wonderful value. Wing span 14 inches. Full instructions supplied. Four Gliders sent for $3 / 6$ post free L. WILKINSON, 8, CITY RD., LONDON, E.C.

WEBLEY AIR PISTOLS

Marvellously

accurate for
target practice
No license required to purchase.
Senior 45/-, Mark 1 30/-,
Junior 20/-. Entirely British.
Write for List. Webley \& Scott Ltd.g
87, Weaman Street, Birmingham, Eng.
 everything needed by the Railway, Boat or Aeroplane Builder, 6d. post free.
We stock Meccano and Hornby Models.
BOND'S 0^{\prime} EUSTON ROAD LTD.,
254, EUSTON ROAD, LONDON, N.W.1. 'Phone: Museum 7137.

RAILWAY POSTCARDS
Real Photographs of both early and present day Locomotives. Price 3d. each.
SEND FOR LIST AND SPECIMEN CARD 4D.
L. PARNELL "Stroudley," Albion Lane, Herne, Kent.

JENNERS

EDINBURGH

AGENTS
for MECCANO and
Hornby Trains

A complete stock of all Hornby
Train Accessories and Meccano Parts

\section*{CINEMATOGRAPHS | BritishMade |
| :---: |
| from $37 / 6$ |}

CINEMATOGRAPH FILMS
from $5 /-$ per $1,000 \mathrm{ft}$. Standard size only Write for our Catalogue, post free, or send $1 /-$ for sample length of Film and Catalogue. Filmeries Co., 57, Lancaster Rd., Leytonstone, E. 11

Hobbies Famous Depôt

 Our 1932 Offer. A Certain Winner This Beautiful Racing Yacht Built with Loving Care 30^{\prime} 23 in . LONG. A REAL BEAUTY Post Free Money back if not approved Free lists
Cheap Boat Fittings

Your Depôt for Warneford's New Aeroplanes, Model Aeroplane Parts, Model Railways, Steam Engines, Speed Boats, Meccano, Photography and Hercules Cycles. Free lists.
C. LUCAS (Hobbies Famous Depôt)

35, MANCHESTER STREET, LIVERPOOL

From £3/19/9 or $2 /$. weekly

READERS' SALES

Bowman Stationary Engine, Drilled Base, good condition, hardly used. Cost 16/9, take $8 / 6$. -Ashley, 38, Crete Street, Oldham.
Wanted. B.D.V. Coupons. State Number and Price-G. Skinner, "Hawthorns," Bennochy Road, Kirkcaldy, Scotland.
Wanted. Old Motor Cycle, any condition. Must be cheap.-43, Bath Street, Huddersfield.
Sale. O Gauge Electric and Clockwork System. 130 feet Track. Five Engines, 21 Rolling Stock. Large assortment Accessories. List sent. Offers ?
Fairbank, 11, Coperscope Road, Beckenham, Kent. Fairbank, 11, Coperscope Road, Beckenham, Kent.
Sale. " Meccano Magazines," 1929, 1930, 56 Sale. "Meccano Magazines," 1929, 1930, 56 Signals, First good offer.-Rutherford, Newtown, Newbury.
Sale.
Sale. Thirty Used Tennis Balls, 5/-, or nearest offer.-Gregory, 39, East Street, Faversham, Kent. Sale. Table Cabinet Gramophone. Good condition.
Cost $f 8$. What offers.-Ambrose, 3, Danson Mead, Cost f8. Wha
Welling, Kent.
Welling, Kent,
Sale. Boys' Books, Novels, Stamps, Cigarette Cards, Albums, Speaker, Games, Small Billiard Board,
18/6. List from 13, Priory Road, Edgbaston. For Sale. Soldiers. Books. Stamp for
Burton, 14, Thorold Street, Boston. Burton, 14 , Thorold Street, Boston.
Sale.
Walker, Takorydi, Manname Rever used. 8/8/
For Sale. Bassett-Lowke 'Lowko Truck on Wooden Sleepers. Points, Curves, Straights, etc. Also Coalbes, Mills Lane, Scarborough. Sale. Collection, in good condition, 56,000 Cigarette Cards. The lot, cheap or in sets. What offers.-John Dalton, 7, St. Georges Road, Hull.
Dalton, "Boy's Own Papers," October 1928 to Sresent. Good condition. Offers. Also 1929 " Meccano Magazines."-Woodburn, 32, Hart Street, Ulverston. Kodak $2 \frac{1}{2} \times 3 \frac{1}{2}$ Daylight Enlarger, hardly used. 15/-or ofiers. Write-Stocks, 22, Wilbraham Road, " M.M.'s," Jan. 1926
Half price or offers.-Clarke, 29, At. No covers. Sutton, Surrey. Sale, Rual "Meccano Magazines," 1922 to date, cheap.-Smalley, 26, Dawson Place, W. 2.
Polished Oak Speaker Cabinet, New, $18 \times 18 \times 7$, $8 / 9$. Another, $12 \times 12 \times 6,4 / 6$. -Holdaway, 25 , Priory Road, Hornsey, N.s.
Sale. Erector Electrical Outfit. Excellent condition, $16 /-$ or nearest before July 1st. Also brand new Dynamo for $7 /-$.-Rimmer, Bishopscourt, Michael, Isle of Man.,
" M.M.'s" for sale. 82. 1923-32. Clean, half price. -R. Austin, "Airlie," Slewins Lane, Hornchurch, plete. Unbound. Condition as new.-Dwyer, 88, Kingscourt Road, London, S.W.6.
8,850 Cigarette Cards for Sale, including over 50 Sets, and 700 Large Cards.-E. Tett, Manor Cottage, Alexandra Road, Whitstable, Kent.
Adana Printing Machine $(45 /-$ Model) for sale. No reasonable offer refused. Write-BM/HEKR, London, W.C. 1.
3,300 Cigarette Cards, 23/-; Wormar Steam Engine, $3 /-$ Shot Gun, 3 -bore, new, $£ 1$; Camera (V.P.K.), cost 25/-, accept 18/---Forsyth, Valleyfield, Ervie, Stranraer.
Sale. "Meccano Magazines" complete, 1925, 26,
$29,30,31$, also 1927, 1928 almost complete; and "Modern Boy," 1930, 31, complete ; 1928, 29, almost complete. What offers ?-Geo.Awdry, Great Cheverell, Devizes.
Sale. Bowman Loco and Tender, 19/6; Clockwork Tank Loco, 3/6; Horizontal Steam Engine, 7/6; Hot Air Bot, 2/6. Also 32" Meccano Magazines," and 160 Boys ${ }^{\prime} 2 \mathrm{~d}$. and 4 d . Books.
Alfa Romeo, $15 /-$; Aeroboat, $7 / 6$; or offers. Both good.-R. Jennings, Porthcurno, Cornwall.
Riley Home Billiard Table, 5 ft ., Cues, Balls, Marker, Spirit Level, etc. Complete. Perfect condition. Cost $f 9$. t5 Cash or nearest. Genuine bargain
Court Street, Madeley, Shropshire.
Unused Bassett-Lowke Metre Racing Hull, Pro pellor, needs Engine, $15 /-$ - Burnham, Library Seaton, Devon.
Sale. Cricket Bat (Size 4) and Buckskin Pads. Very Good Condition. Offers.-Plowden, Ampleforth College, York.
Hand-Turned 9 mm . "Baby-Ciné" Camera with Two Chargers, 27/6. Perfect condition.-Furst, 6, " Meccarrace, Joppa, Nidothian
Meccano Magazines." April 1924-December 1930, including one Spring-back Binder. March 1929 missing. Offers? Also Cassell's "Children's Book of Knowledge," complete, unbound.-Jevons, 12, Blenheim Gardens, Southampton.
Sale. Camera, Tripod, Darkroom Lamps, Entomological Apparatus and New H.M.V. Records. articulars-Box 601.
Sale. 60 ft . Bowman Rails, 2 -Cylinder Stationary Engine, Large 4-4-2 Clockwork Loco, also Clockwork
Motor, No. 2 Brownie Camera, cost $£ 4 / 10 /-$ Offers? Motor, No. 2 Brownie Camera, cost $f 4 / 10 /-$ Offers?
Full details from-H.C.V.W., 21, North Hili, London, Full details from-H.C.V.W., 21, North Hill, London, . 6.
Sale.
$\frac{1}{2}$
h.p.
25
condition Electric Motor, D.C., 220v., perfect condition, $25 /-.4 \mathrm{v}$. Accumulator, perfect, $5 /-$.
Send for list other bargains. Stamp.-W. W. Taylor, Send for list other bargains. Sta
206 , Summergangs Road, Hull.

This Month's Special Articles
Air News
Air Transport in all Weathers
Artists of Prehistoric Times
Books to Read
Camping Holiday Plans
Competition Page
Duplex Boring and Turning Mill
Engineering New
Fireside Fun
From Our Readers
Guild Pages
Hornby Railway Company Pages
How Rubber Golf Balls are Made
Leeds Northern Railway " Aerolite
Life Story of Meccano
London's Water Supply
£500 Model-building Contest Results
Meccano Twin Anti-Aircraft Guns
Model-building Contest.
Model-building Contests Results
New Meccano Models
Of General Interest
Out-of-Gauge Traffic
Photography from Aeroplanes
Photographic Page
Railway News
Stamp Gossip
Transport in Roadless Countries
The Outdoor World
What Shall I Be ?
Work of the Railway Clearing House

RAILWAY PHOTOGRAPHS

Send 4 d . for specimen card and full list (M11) of titles. Also Aeroplane photographs-list (A1) and specimen 4 d
3d. each, $2 / 6$ per dozen (post free). Railway Photographs, 23, Hanover St., Liverpool.

Terry's Sculling Exerciser

The rowing enthusiast who is debarred by reasons of distance from suitable waters, as well as the man who seeks a novel aid to physical fitness, will find in Terry's Sculling Exerciser an ideal outlet for his enthusiasm. It reproduces exactly the effect of river sculling, bringing into action the same muscles of the leg, arms and body. This unique feature is secured by special construction, and enables persons of all ages to enjoy in their homes the benefits of rowing sport ; while the outdoor sports lover will find it invaluable in training.
The exerciser has an overall length of $5 \mathrm{ft}, 5 \mathrm{in}$. and is built on a frame of $\frac{2}{6}$-in. Steel tube, mounted on rubber studs to secure a firm floor grip and prevent a noisy rumble. The sliding seat is fitted with fibre silent rollers, and is specially designed to give a good seat grip. It is tensioned by two Terry steel-strands, and in use the legs are thrust out against the resistance of these springs. The rowing cords are tensioned by three Terry steel-strands, but the strength of pull can
be varied by using only one or two of the strands. be varied by using only one or two of the strands.
Readers who are interested should write, mentioning the "M.M.," to Herbert Terry \& Sons Ltd., Redditch, the "M.M.," to Herbert Terry \& Sons Ltd., Redditch,
for further details and for a copy of the illustrated for further details
descriptive leaflet.

May Bridge Building Contest

How Meccano models helped American engineers to plan important bridges across busy waterways at New York was explained in an article that appeared on page 366 of our May issue, and in connection with this, we announced a Bridge-building Competition. Entries may be of any type and may be either original in design or reproductions of famous bridges, such as the Tower Bridge, Quebec or Sydney Harbour Bridges. Photographs or drawings should be addressed " Special Bridge Contest," Meccano Magazine, Binns Road, Old Swan, Liverpool, and the competition remains open until' 30th July, 1932

British Model Aircraft

The range of model aeroplanes and sailplanes recently introduced by the British Model Aircraft Company features in the constructional details. The most important of these is an automatic stabiliser, formed by a combination of rudder, rubber hook and skid, that has the effect of forcing the machine back on to a straight course after "banking" to right or left lean out in the same direction, and thus automatically pulls the rudder fin round in the opposite direction to straighten the machine again.
The design of the "British" Sailplanes is a distinct departure from that of the ordinary glider. They are constructed on the same lines as the model aeroplanes
with silk covered wings, tail and rudders, all of which are detachable and adjustable. The fuselage is neatly shaped and well balanced so that no additiona "ballasting" is required to secure stability in flight During tests recently a sailplane of the B.M. 35 type made a straight flight of over 150 yds . and reached height of 100 to 150 ft .
Further particulars of these interesting models can be obtained from the British Model Aircraft Company
20 , Chapel Street, London, E.C. 2. Readers should m ntion the "M.M." when sending their enquiries.

Meccano MAGAZINE

Registered at G.P.O., London, for transmission by
 Canadian Magazine Post.

EDITORIAL AND ADVERTISING OFFICE :Old Swan, Liverpool, England

Telegrams: " Meccano, Liverpool."

Publication Date. The "M.M." is published on the 1st of each month and may be ordered from any Meccano dealer, or from any bookstall or newsagent price 6 d . per copy. It will be mailed direct from this office, $4 /-$ for six issues and $8 /-$ for twelve issues.
To Contributors. The Editor will consider articles and photographs of general interest and payment will be made for those published. Whilst every care will accept ren articles, etc, submy loss or damage. A stamped addressed envelope of the requisite size should be sent where the contribution is to be returned if unacceptable.

Readers' Sales and Wants. Private adyertisements (i.e., not trade) are charged 1d. per word, minimum 1/-Cash with order. Editorial and Advertising matters should not be dealt with on the same sheet of paper ments of goods manufactured by Meccano Limited cannot be accepted.
Small Advertisements. 1/6 per line (average seven words to the line), or $16 /-$ per inch (average 12 lines to the inch). Cash with order.
Display. Quotations for space bookings, and latest net sale figures, will be sent on request.
Press. Day, etc. Copy should be sent as early in the month as possible for insertion in following issue. We usually close for press on or before 6 th of each
month for following issue. Half-tone blocks up to month for following issue. Half-tone blocks up to 100 screen.
Proofs of advertisements will be sent when possible for space bookings of not less than half-an-inch.
Voucher copies. Sent free to advertisers booking one inch or over. Other advertisers desiring vouchers voucher copy at same time
Remittances. Postal Orders and Cheques should be made payable to Meccano Ltd

Ordering the "M.M." Overseas

Readers Overseas and in foreign countries may order the or direct from this office. The price and subscription rates are as above, except in the cases of Australia, where the price is $1 / 5$ per copy (postage extra), and the subscription rates $9 / 6$ for six monthis and $19 /-$ for 12 months (post free): Canada, where and $19 /-10 r 12$ months (post ree), Canada, where 75 c . for six months, and $\$ 1.50$ for 12 months (post paid).

The U.S.A. price is 15 c . per copy, and the subscription rates $\$ 1$ and $\$ 2$ for 6 and 12 months respectively (post free),
Overseas readers are reminded that the prices shown throughout the "M.M." are those relating to the home market. Current Overseas Price Lists of Meccano Products will be mailed free on request to any of the undermentioned agencies. Prices of other
goods advertised may be obtained direct from the goods advertised
firms concerned.
CANADA : Meccano Ltd., 34, St. Patrick St., Toronto. UNITED STATES : Meccano Co. of America Inc., New Haven, Conn. Meccano Co. of America Inc., 200, Fifth Av., New York.
AUSTRALIA: Messrs. E. G. Page \& Co.,
52, Clarence Street, Sydney, N.S.
NEW ZEALAND : Models Ltd., P.O. Box 129 ,
Auckland (Kingston Street) SOUTH AFRICA: Mr. A. E. Harris (P.O. Box 1199), INDIA : Karachi: Bombay Sports Depot, Elphinstone Street, Bombay ; Bombay Sports Depot, Dhobi Talao. Calcutta: Bombay Sports
Depot, $13 / \mathrm{C}$, Old-Court House Street. The Editor wishes to make known the fact that it is not necessary for any reader to pay more than the published price. Anyone who is being overcharged in his country or write direct to the Editor.

MECCANO PARTS \& ACCESSORIES

The Meccano system is composed of some 250 real engineering parts, mostly made of steel or brass, each one of which has a definite mechanical purpose. These parts combine to form a complete miniature engineering system that enables practically any movement known in mechanics to be duplicated. A group of the parts from No. 66 to No. 131 is listed above.

New parts are always being invented in order to keep Meccano model-building in line with the most modern engineering requirements. The greatest care is taken in the designing of these parts to ensure that they function exactly as their counterparts in actual practice.
A complete list of all the parts in the system may be obtained from any Meccano dealer on application.

${ }^{\text {the }}$ N EW Hornby Speed Boat 500 feet on one winding!

[^0]: Montserrat New Picts. 7d. 50 U.S.A., all diff. 9d. Antigua Picts. $\quad . .7 \mathrm{~d} .100$ Brit. Cols, all diff. 9 d Sierra Leone Picts. 7d. 150 Fine Mixture 6d. Post 11 $\frac{1}{d}$ d. extra. Selections of attractive Stamps from J. R. MORRIS, 9, Audley Road, Folkestone, Kent.

[^1]: ＊9 Nyassa Triangular，1924．Complete se
 1 Rhodesia，1897．Large 8d．pictorial（Cat．4／6） 14 Antioquia，1899．Complete set（Cat．2／11）
 9 Roumania Schoolboy King．Complete set
 9 Roumania，1930．King Charles portrait
 ＊6 Abymania，1931．Air Mails showing monoplan
 ＊6 Abyssinia，1917－28．Large pictorials（Cat．8／1）1／4
 ${ }^{*} 16$ Armenia，1921．Complete set．Rare
 ＊1 Iceland Triangular，1930．Air Mail
 1 Latvia Triangular，1921．Air Mail（Cat．1／3）
 5 Liberia Triangular，1921．Snake type
 ＊9 Liberia Triangular， 1919 （Cat．12／3）
 18 Montenegro，1921．Large pictorials complete
 ＊1 Sudan，1931．Air Mail．Monoplane pictorial 5 India，1931．New Delhi commemorative
 27 Liechtenstein，1920．Complete set
 12 Danzig，1923．Air Mails complete
 17 Montenegro，1913．Complete set（Cat．5／6）
 14 Ukraine \quad 3d． 100 British Colonials 25 Air Mails $\quad 6 \mathrm{~d} . \quad 100$ French Colonials
 200 Hungary $\quad 1 / 7 \quad 500$ Different Stamps．．．$\quad 1 / 6$ W．BENNETT，53，Marlborough Road，London，E．8．

[^2]: C. E. CONEYBEARE, 470-2, Stapleton Rd., Eastville, BRISTOL.
 M. W. DUNSCOMBE LTD., $5 \& 7$, St. Augustine's Parade, BRISTOL.

 ## SALANSON LTD.,

 20, High Street, BRISTOL Optic House, 119, Queen St., CARDIFF.

[^3]: MECCANO DEALERS PLEASE NOTE
 Our charge for this space is $£ 5$ for twelve months and is open to all dealers carrying full stocks of Meccano Goods and Hornby Trains.

