The Casing
Build two stimilar sides, each consisting of one $12 \frac{1}{2}$ " (I) one $9 \frac{1}{2}^{\frac{1}{n}}$ (2), one $4 \frac{1}{2}{ }^{1 \prime}$ (3), and one $3^{\prime \prime}$ Angle (iirder, filled in with five $4 \frac{1}{2} \times 22^{\prime \prime \prime}$ Flat Plates, and a $3^{\prime \prime} \times 2^{\prime \prime}$ Plexible Triangular Plate。 The two sides are then joined together with three $7 \frac{1}{2}$ Angle Girders 5, and a $7 \frac{1}{2}$ " Strip 6. $4 \frac{1}{2}$ " $\times 2 \frac{1}{2}$ " Flat Plates fill in the back, whilst two $5 \frac{1}{2}$ " $\times 22^{\frac{1}{2}}$ " Flat Plates are bolted to the front. Bolt a $12 \frac{1}{2}$ " Angle Girder 7 to the end Flat Plates by Angle Brackets and two $\left.3 \frac{1}{2} \right\rvert\, x \frac{1}{2}$ n Double Angle Strips 8 and 9 to the Angle Girder and side Plates. Four l" Pulley Wheels with Rubber Rings, are attached to the base with 흥 Bolts and Flanged Brackets. The Adding Mechanism.

On a $6 \frac{1}{2}$ " Rod secure a $1 \frac{1}{2}$ "Sprocket Theel 10, a $I^{\prime \prime}$ Gear Wheel 11 and a $I^{\prime \prime}$ Pulley Wheel with Rubber Ring 12. The Rubber Ring should Iress lightly against the Flat Plate, with a Compression Spring and Collar 13, acting as a brake. A Bevel Wheel 14 drives another Bevel Wheel 15 mounted on a $5^{\prime \prime}$ Rod 16 coupled to a $2 \frac{1}{2}$ " Rod 17 on which is secured a Bevel Wheol 18. The $1^{\prime \prime}$ Gear Wheel 11 drives a similar Theel 19 on a $5^{\prime \prime}$ Rod 20. Fasten a Threaded Pin 21 in the elongated hole of a Double Amm Crank secured to Rod 20.

On the rims of three Boiler Ends marked "A", "B", and "C" in the illustrations, stick a $6 \frac{1}{2}^{n} \times \frac{1}{2}^{11} \operatorname{strip}$ of white paper, mariked into ten equal divisions, each approx. 6/10" in length. Obtain from an old calendar the numbers 0 to 10 , and stick one in each space. Cover with a length of transparent cellotape.

Ivo $\frac{3 "}{4}$ Bolts, with three ITuts hold each Boiler Bnd to a $1 \frac{1}{2}$, Sprocket Wheel one of which is seen at 23 placed loosely on an $8^{\prime \prime}$ Rod 24, Collars being used to keep it in position. The Sprocket theels 10 and 23 are connected by a Chain.

Two more Boiler Ends are treated similarly, and placed on Rod 24, and spaced apart with Collars. It should be noted that the numbers on Boiler End "C" run the opposite way to those on Boiler Finds " A " and "B". The next thing is to build up two units as follows:Take a $5 \frac{1}{2}$ Strip and bend it into a circle overlapping the ends one hole, around a $1 \frac{1}{2}$ n diemeter broom handle. At the joint and also diagonally opposite, a $\frac{1}{2}$ Bolt with a Washer secures an Angle Braclet, to which is bolted a Bush Wheel. In the romaining holes in the Strip, six $\frac{7}{3}$ " Bolts are placed, with the edges of the Nuts square with the edges of the Strip. Place one of these units on a $5^{\prime \prime}$ Rod 25, together with a $I_{2}^{1 n}$ Sprocket Wheel 26, a $1^{\prime \prime}$ Pulley
with Rubber Ring，a Compression Spring and Collar．Comect the Sprocket Wheel 26 to the Sprocket Theel on Boiler Find＂B＂which must be set so that the Threaded Pin 21 strikes one of the Bolts 27 as the number from 9 to 0 is changing on Boiler Find＂A＂．A I＂Sprocket Wheel is fixed on a $5^{\prime \prime}$ Rod 28，on which is also fastened a Double Arm Crank 33 fitted with a Threaded Pin，and a Bevel Wheel 29．A Bevel theel 30 on a $2 \frac{1}{2}$ Rod 31 engages with Bevel Theel 29.

The intermittent drive from the Double Arn Crank 33 to the built－up unit is similer to the drive on shaft 20 and 25．The $1 \frac{1}{2}$＂Sprocket Wheel 34 is connected by Sprocket Chain with the Sprocket of Boiler Bnd＂C＂。

The Oporating Dial Units

A $7 \frac{1}{2}$＂Strip 38 is attached to the sides of the casing by Angle Brackets and $\frac{3}{4}$＂Bolts 39 on each side．Two Double Bent Strips are bolted to the $7 \frac{11}{2}$ Strip 38 and a $\frac{1}{2}$ Bolt 58 holds a $4 \frac{1}{2}{ }^{n}$ Strip 42 。

The operatine dials are similar to each other so that a description of one of them will surfice．Dach is constructed by securing a Bevel Wheel to a $3 \frac{1}{2}$ R Rod 40 ，placed through the Double Bent Strip 41，the $4 \frac{1}{2}$＂Strip 42 and two Washers．A Retchet Wheel 43 is fixed to the Rod．A PawI 44 is pivoted on a $\frac{3}{4}$ ．Bolt 45 and a piece of Spring Cord keeps it ongaged with the Ratchot Whoel．Another Ratchet Wheel 47 is fastoned in position，four Washers being used to space it from the Ratchet Wheel 43．A disc． $3^{\prime \prime}$ diameter，cut from stout cardboard or shect tin has ton equi－distant $3 / 16^{\prime \prime}$ holes pierced in it $\mathcal{I}_{4}^{\prime \prime \prime}$ from the contre，and two holes $\frac{1}{2}$＂from the centre，diagonally opposite．The centre hole is $\frac{\pi}{8}$＂ diametor．

The disc 52 is bolted to the Face Plate 49 with the $1 \frac{1}{2}$ Pulley 53 between thom，care being taken not to damage the elastic band with the rim of the Pulley Wheel．To the $1 \frac{1}{2}^{\prime \prime}$ Iulley Theel，tio a piece of thin elastic（A Driving Band will do）through ono of its outside holes，nearest the centre of the machine，to the $1 \frac{1}{2}$ Pulley Wheel on the other dial．The rubber band should keep in the groove when the dial is tumed，and pull it back to the stop bolt 45．Bolt an Adaptor for Screwed Rod 48 to a Face Plato 49．Fix a Pawl 50 in position with a Collar．A nut and bolt 51 has a piece of Spring Cord attached，the other ond being anchored to the Face Plato．

The number＂O＂on the dial should be arranged to be in the front centre position when the Collar 54 is against the stop bolt 45．The Face Plate is free on the shaft 40，the Pawl 50 transmitting the movenent to the shaft．The Pawl 50 should move two teeth over the Ratchet
is diailed and over 14 teeth when number 7 is dialled) The Pawl 44 locks the Ratchet Wheel 43 immediately behind the tooth.

A frame formed by $7 \frac{1}{2}^{1 n}$ Strips 55 and two $3 \frac{1}{2}^{\frac{1}{n}}$ Strips is attached to the main casing with Obtuse Angle Brackets. Two $2 \frac{1}{2} " \times 1 \frac{1}{2}$ " Plexible Plates are joined together across the Strips 55. Dial Stops, each consisting of a Fishplate bolted to a l' $^{\prime \prime} \times \frac{1}{2}$ Angle Bracket are attached to the $7 \frac{1}{2}{ }^{11}$ Strip 6 .

Dialling is done by placing the end of a short Rod in the appropriate numbered hole in the dials and pulling the dial around until the rod hits the dial stop, just like dialling on an automatic telephone.

A $1 \frac{1}{2}$ " Rod fitted with a Collar for a knob, makes a suitable dialling tone and can be kept in a holder at the front of the machine as shown at 56 in the general view illustration of the model.

A l" Pulley Wheel 57, fixed to Rod 40 can be used to turn the Boiler Bnd "A" back to zoro. NOTE. Should the Boiler End "A" be in 8, 9, 0, position the dial operating Boiler End "B" must not be turned. For example, if the number 138 is registered on the Boiler Ends and 26 is required to be added on, the 6 must be diallod first on "A", followed by the 2 on "B". The Casine Covers.

A cover Plate 35 (see general view illustration) is built by bolting two pairs of Windmill Sails to two $7 \frac{1}{2}$ " Strips. These are joined together with two $3 \frac{1}{2}$ " $\times 2 \frac{1}{2}$ " Flexible Plates and a $3 \frac{1}{2} 1$ Plat Girder. Four Collars space the cover from the $9 \frac{11}{2}$ Angle Girders 2 of the Casing.

A rectangle frame is made from two $7 \frac{1}{2}$ " Strips 36 and two $5 \frac{1}{2}$ "Strips 37 , using $\frac{3}{6}$ Bolts. Two $5 \frac{1}{2}$ " $x 3^{\frac{1}{2}}$ " Flat Plates are bolted between the Strips 36 to form a detachable cover plate. Parts required to build the Adding Nachine.

